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Preface

The blade-vortex interaction is a well-known central feature of rotary-wing flight. The rotor

wake contains vorticity because of variations in the bound circulation. Lift and circulation peak

near the tip of the rotor blade, and then decrease as the actual tip is approached. The vortex

strength there is large, with the result that a strong tip vortex is formed by the roll-up of the sheet

of shed vorticity. In forward flight, the vortex filamentz are convected in a complex flow field;

they take the form of distorted and skewed helices.

Interaction takes place between a rotating blade and the tip vortex from the preceding blade,

both in hover and forward flight. The resultant blade loading is known to be the cause of unsteady

pressure loading with higher harmonics. In turn, the pressure fluctuation is an important factor in

helicopter vibration component fatigue and overall performance; and also in the generation of

noise. The latter includes blade slap which is, because of its impulsive nature and high intensity,

evidently the most disturbing of the noises radiated by rotary-wing aircraft.

Clearly, the phenomena just described are unsteady and take place typically at transonic flow

conditions. Unsteady transonic flows are highly nonlinear, and the equations of motion cannot, in

general, be linearized as they can in subsonic and supersonic flows. The complexities of such

' flows are indicated in the review articles by McCroskey 4 0 and by Tijdeman and Seebass 4 I. A

perspective of progress in our understanding of the underlying physical problems and the

development of improved investigative methods, both analytical/numerical and experimental, is

obtainable from the Summary Notes of the 1984 Workshop on Blade-Vortex Interactions4 2 .

Recent contributions to the study of BVI problems have been impressive, but difficulties in

dovetailing results with suitable quantitative modeling to predict flight performance parameters are

still severe. As an alternative and basic approach to a problem of this complexity, the present study or

isolates a "core" part of the phenomenon, namely the interaction of single, well-defined vortex with

a chosen airfoil shape at a given angle of attack and with suitable choice of other parameters, e.g.,

lateral displacement of the vortex path from the head-on trajectory. A substantial part of the effort

to date has been concerned with optimization of the technique to generate a single vortex, detach its ./f

co" -  ,
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"umbilical," and then have it proceed as a free vortex moving at constant velocity in a quasi-

uniform flow toward a "target" airfoil. This experiment, performed in a shock tube, has been fully

successful; indeed this now-proven technique offers capability for a variety of related studies. It is

quantitative in that the internal structure of the vortex as well as that of the surrounding flow field is

determined by a combination of pulsed holographic interferometry and point measurements with a

fast-response pressure gauge. By adjusting the time-delay for laser discharge, the time-

dependence of both vortex structure and interaction phenomena have been observed - a necessary

feature when dealing with unsteady flows.

Another substantial part of the effort to date has dealt with a detailed study of the structure of

the free vortex, a subject which is the central topic of the Ph.D. thesis of research student Michael

Mandella. The thesis forms the bulk of the present report.

The work to date has also included preliminary studies of the interaction of these vortices with

models of airfoil shapes used in several current helicopters. Some very special features have

already been observed, but a systematic study is now in order, it would constitute the logical

subject for any follow-on work.

Included at the end of the report is a special addendum dealing with an assessment of recent

literature on blade-vortex interactions. References cited in the addendum are included with the

latter rather than forming part of the main bibliography.

Support for this research by the U.S. Army Research Office is gratefully acknowledged.

Special thanks are also due to Dr. Helen Yee of the NASA Computational Fluid Dynamics Branch

for providing results on the vortex generation process via computer simulation. Additional

gratitude is offered to Professor Nikolaus Rott of Stanford, Dr. Chee Tung and his colleagues of

NASA-Ames, Professors Bert Hesslink and John Pender, both of Stanford, for helpful advice

with several theoretical and experimental aspects of the program. As always, Vadim Matte was

indispensable in handling practical and operational problems; and Dale Buermann deserves thanks

for his assistance with the electronic instrumentation.
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Abstract

The structure of a compressible free vortex has been analyzed while undergoing

convection in a quasi-uniform stream flow. Holographic interferograms reveal radial
density profiles of the vortex at different stages of its development during convection.
A general mathematical expression is found which closely describes the distribution
of density inside the vortex. By use of experimental data and the governing equa-

tions in an empirical/theoretical analysis, an extended physical description of the
vortex is developed. The time behavior of the density, determined from the exper-
iments, allows the solution of the Continuity Equation and a distribution of the
radial component of fluid velocity relative to the vortex center is obtained. The

density information, supplemented by an independent determination of pressure is
then used in the Radial Momentum Equation to obtain a distribution of the circum- O
ferential component of fluid velocity relative to the vortex center, thus completing
the description of the radial dependence of the velocities inside the vortex. Futher-
more, the calculated velocities are used to evaluate the magnitudes of the convective
and diffusive terms of the Angular Momentum Equation, thus providing insight into
the question of the relative effects of compressibility and vscojity on the internal

structureand behavior of the vortex in terms of the distribution and transport of
angular momentum.
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Chapter 1

Introduction

"Of the eddies one is slower at the center than on the sides, another is

swifter at the center than on the sides; others there are which turn back

in the opposite direction to their first movement" Leonardo Da Vinci
O

Da Vinci's descriptions of the vortices he had observed in water reflect man's

fascination from earliest times of the beauty and power of spinning and swirling

vortex motions. Images of spirals are found in artworks dating back over thousands

of years, perhaps inspired by the vigorous whirlpools found in streams or the violent

eddies seen in flames. Vortices appear in nature on every scale starting from the

spinning charge of the electron, to bathtub vortices, to tornadoes and hurricanes

in the atmosphere, and finally to the rotating clusters of galaxies in the universe.

Given the value of 2.8 femtometers for the classical electron radius [1] and 10 million 0

light-years for the radius of a galaxy cluster [2], it can be said that vortex motion

occurs over a range of 38 orders of magnitude. It is interesting to note that one's

introductory approach to motion, as founded by Galileo and quantified by Newton's .4b,

famous three laws, is based on straight-line motion, which is not observed in nature

over such an incredible range of scales as vortex motion. A special case of vortex

behavior is the subject of the present study.

1 1C



2 CHAPTER 1. INTRODUCTION

1.1 Orientation

The study of vortices has been a central component of basic and applied research in

fluid dynamics, and vortex theory forms part of the classical core of the subject. Of

the many facets of this discipline, those of particular interest to aerodynamicists are

the generation of vortices by aeronautical surfaces and the interaction of vortices

with such surfaces. The former phenomenon has played an increasingly significant

role as part of the three-dimensional flow field around flight vehicles at high angles of

attack. The latter, on the other hand, is a principle feature of rotary-wing aircraft,

where it is often referred to as the vortex-airfoil or blade-vortex interaction (BVI). It

is this problem which has stimulated the present research. Better understanding of

the phenomenon is especially motivated by the desire to reduce the noise generated 4Z.
as well as the transient pressure loading produced by the BVI.

The subject of vortex interactions is inherently a very complex one, and one

that is further exacerbated by the fact that blade-tip speeds of current rotary-wing

aircraft lie in the transonic range. Thus, compressibility effects must be considered

in any realistic study. Most of the analytic work to date has ignored the effects of

compressibility (see Lugt (3] for a historical perspective). The same is true of most

of the experimental work reported in the literature. I

In practical vortex interaction situations, the vortices are distorted and the

vorticity is partially randomized soon after generation by the surrounding non-

uniform wake. Of course, that behavior increases the complexity of the subsequent

interaction. How, then, should one formulate a systematic research program to

explore the basic nature of the BVI? The logical answer is to model the phenomenon

by studying the interaction of a single vortex with a chosen airfoil surface under

well-defined conditions. Here, we adopted an experimental approach by designing

a suitable facility in which to perform such studies.

The experimental arrangement, described further in Chapter 2, produced the IN

desired interaction by generation of a single vortex which was then convected by

r or I r r r~ W Irl W.I Ir rNo
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1.1 . ORIENTATION 3

a quasi-uniform 2-D compressible flow toward an airfoil model (Mandella and Ber-

shader [41,[51). The flow was energized by a traveling shock, with the vortex genera-

tion and interaction taking place in a test section specially designed for appropriate

experimental diagnostics, including holographic interferometry. The early experi-

ments (see Figures 1.1--+1.4) confirmed that the density configuration of the vortex

itself could be determined with considerable precision (later, non-optical diagnos-

tics were employed to obtain an independent determination of the radial pressure

distribution across the vortex). It was then decided that a necessary first step in

the vortex-interaction study should consist of an extended analysis of the structure

and behavior of the free-moving (convecting) vortex prior to interaction.

The Present Study

The objective of this thesis, then, is the measurement and calculation of the various

physical properties associated with the compressible free vortex during its convection

stage inside a special shock tube arrangement. The accomplishment of this objective

is done in several stages:

1. A special test section which contains the vortex generator is constructed and

attached to the open end of a shock tube. A compressible flow, which is

provided by the shock tube, enters the test section and a free, two-dimensional,

transverse vortex is generated by the arrangement. The vortex travels with

the flow between large optical windows for a sufficient period of time to allow

optical measurements to be made.

2. A double-pulsed laser holographic interferometric system is set up along with

appropriate electronic timing and synchronization circuits for making inter-

ferograms of the vortex flow. The interferograms, when evaluated, provide

quantitative density information about the vortex.

3. A pressure measurement technique is used to gain additional quantitaive in-

formation about the vortex, independent of the density measurements.

0



4 CHAPTER 1. INTRODUCTION

4. A numerical procedure for curve fitting of the density and pressure data is used

to generalize the quantitative density and pressure information into empirical

relationships.

5. Using the combination of experimentally derived empirical laws and the ap-

propriate equations of motion, calculations reveal other physical properties of

the vortex.

... 4*
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3 11. ORIENTATION 5

Figure 1.1: Interferograms Showing Generation of Vortex.

Sequence of four interferograms in the location of the generating airfoil taken
at 20 micro-sec intervals during the vortex generation stage as the shock travels

from left to right over the airfoil.

'.
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Figure 1.2: Interferogram Showing Vortex During the Convection Stage.

This wide field-of-view interferogram shows the whole flow field during the N

vortex convection Stage. The generating airfoil and the target airfoil (for

vortex-airfoil interaction studies) are both visible. The age of the vortex

is -, 275 micro-sec: and is traveling at ;z 180 rn/sec behind the Mach 1.4

shock. The vortex diameter is 1 cm.
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Figure 1.3: Close-up Interferogram Showing Vortex Structure.

This is a close-up of the vortex in Figure 1.2, the dark lines represent density

contours which indicate a density change of ;:t 1/20 of atmospheric density

from one contour to the next. The vortex is highly evacuated in the center

(factor of % - 3 change from the ambient density surrounding vortex to the 40

center). The contour lines closely resemble a system of concentric circles.

This symmetry is utilized both in the analytic modeling of the vortex and in

the search for empirical functions to fit the data.

=11 .
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himi

Figure 1.4: Interferograms Showing Vortex-Blade Interaction.

Sequence of four interferograms taken at 25 micro-sec intervals during the
vortez interaction 9tage. Rotation in the incident vortex is counterclockwise.

As the vortex approaches the airfoil, there is an upward component of velocity

across the airfoil nose, i.e., perpendicular to the chord of the airfoil. As a

result, a secondary vortex is produced having clockwise rotation. There is

a complex interaction between these two counter-rotating vortices and the

surface of. the airfoil. Note: in the last frame, acoustic waves can be seen

emanating from the interaction point.

C',,
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1.2 Background

1.2.1 Theory of the 2-D Axisymmetric Compressible

Free Vortex

The most striking, immediate observation of the free vortex (see Figure 1.3),

is the remarkable symmetry about its axis. The density contour lines appear

to closely resemble a system of concentric circles. It can also be observed

that the vortex travels at a constant speed along a linear path during this

convection stage (see Figure 1.2). Under these conditions the vortex motion

can be described within an inertial frame with respect to the laboratory system S

and a Galilean transformation may be applied to the equations of motion. The

vortex flow can thus be described by the Navier-Stokes equations in a reference

frame that is stationary with respect to the center of the vortex. With the

additional assumptions that the vortex is two-dimensional and axisymmetric

(all physical quantities depend only on time t and the distance r from the axis),

then the Navier-Stokes equations may take a form in a cylindrical coordinate

system having the origin at the vortex center. Beginning with the general

form in cylindrical coordinates as given by Thompson [6], the equations may

be written in the following form:

Continuity: I

r3 +r (rpv,) 0. 6Pk.
-p'1 ""--

om.es/&
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f~~

Radial Momentum:
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Angular Momentum:
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These governing equations include the effects of viscosity, compressibility and

heat conduction. Physical interpretations of the various terms have been pro-

vided beneath each term. In this coordinate system, the velocity is separated

4,
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into two time-dependent components. These are the radial and circumferen-

cial components given by v, and vo respectively. The time-dependent quanti-

ties p, P, T, k and s are also dependent on the coordinate r which is the radial

distance from the center of the vortex. The system of equations is completed

by the Equation of State for a perfect gas

P=pRT (1.5) I.
where R is the gas constant per unit mass.

1.3 Review of Previous Work

In the next two sections, the history of the development of special vortex I
models from the governing equations given in Section 1.2.1 is outlined, followed

by a history of previous experimental work in this area.

1.3.1 Previous Theoretical Work

Vortices occur in a wide variety of conditions. There has been a great deal of

practical interest in the vortices that are produced in flows past bodies. These

vortices generally involve a large-scale flow field surrounding a central core re-

gion that is three-dimensional in nature [7]. The three-dimensional vortices

studied by Hall [8] and solved by numerical integration methods, have an ap-

preciable axial component of motion and there is an interaction between the

axial and circumferential components of velocity. This axial motion, and the , "N

wide range of possible core structures, distinguish the three-dimensional vor-

tex from the two-dimensional case. Another study [91 reported a special invis-

cid case where the Navier-Stokes equations for a steady three-dimensional con-

ical vortex could be transformed into those for an unsteady two-dimensional

vortex flow, and thus a correspondence is found between three-dimensional

9T



12 CHAPTER 1. INTRODUCTION

cores growing in space and two-dimensional cores growing in time. This con- .

ically symmetric solution of the Eulerian equations of an incompressible fluid

was thought to be descriptive of the flow properties of leading-edge vortices

which are observed in flows over slender delta wings. Brown [10] presented an

extension of Hall's theory to include the effects of compressibility. The results

of this study indicated that the only solutions acceptable on physical grounds

have vanishing density on the axis. The corresponding two-dimensional time- ,%

dependent flow (two-dimensional self-similar core growing in time) was ob-

served in a shock tube by Howard and Matthews [11] by passing a shock

over a vertical wedge. A system of 2-D axisymmetric self-similar isentropic

equations were assumed valid in describing an inviscid outer core region of

the vortex. Interferograms were made of the vortex at different times during

the growth period and the numerical solutions obtained were found to be in

good agreement with the experiment. Merzkirch [12] treated the same 2-D

problem using the equations in Section 1.2.1 along with the additional as-

sumption of self-similar behavior and found a solution for the inner viscous

core. Unfortunately, these similarity solutions inherently describe a vortex

core growing in size and are not consistent with experimental observations of

free compressible vortices. In 1948, Burgers (131 found a closed-form solution

of a steady-state 3-D axisymmetric incompressible viscous vortex. Burger's

steady vortex has an inward radial convection of angular momentum which

it balances the outward diffusion. To preserve continuity in this incom-

pressible vortex, there is an axial flow moving fluid out at the same rate as

it is brought into the vortex by the inward radial flow. In 1958, a general

time-dependent closed-form solution of this vortex was discovered by Rott

[14] which describes the unsteady development of a vortex flow into the final : .

steady configuration given by Burgers. Rott also investigated the tempera-

ture profile of this vortex [15]. Even though compressibility has been largely

ignored, the information provided by these 3-D and 2-D studies is useful for

developing some basic generalizations that distinguish the 3-D vortex from the

2-D vortex under various conditions and lead to the conclusion that a study of
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the effects of compressibility should begin with the simpler two-dimensional

case. This discussion will continue with a review of previous work done on

the two-dimensional vortex as described by the equations in Section 1.2.1.

In general, solutions of the basic equations in Section 1.2.1 can be found only

by numerical integration. Some closed-form solutions of these 2-D equations

exist in a limited number of special cases which give information on the char-

acteristics of vortices. The system of equations in Section 1.2.1 involve seven

quantities (v., vj, p, P, T, k and p) which in a real gas are all functions of r 0

and t. The most common method of dealing with this problem is to assume

that some of the quantities have constant values independent of r and/or t.

This approach gives information on some special types of vortices with varying

degrees of compressibility, viscosity and real gas effects.

Incompressible Inviscid vortex

The compressibility may be neglected by setting p = constant and v, = 0. •

By also neglecting the radial dependence of viscosity (p = constant) and

assuming steady-state conditions, Equation 1.3 can be put into the form:

a4r3 Q!±)] =0.

Note that under the assumptions given in this model, the solution
a

vO =- -+br , -

with a and b constant and determined by the boundary conditions, is com-
pletely independent of the viscosity. On the axis, the boundary condition.a
vO (r = 0) = 0 is required by the symmetry of the problem. Another bound-

ary condition vs (r = oo) = 0 may be used. For a = 0 this solution describes a

solid body rotation which satisfies the boundary condition on the axis and for

which b is the angular velocity. For b = 0 this solution represents the potential

vorte:
K 0

r
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where a = K, with K being the vortex strength which is related to the

circulation r by
r --2rK.

For the potential vortex, the flow is irrotational except for a singularity at the

origin; i.e.,

The two solutions can be combined to describe a potential vortex that is

modified near the axis, i.e., a potential vortex which has a solid body core.

The velocity increases linearly from zero at the center to a maximum value

V~JGk (where the solid body rotation ends and where the potential velocity

field begins).

Under the same assumptions, Equation 1.2 becomes:

8' 2

Fr

with p being a constant. Substituting X for v# gives:

8P pK 2

-Fr r 3

Integrating [16], gives:
P (r) I pK 2

2 r 2 'rn
where P,, is the pressure at r = oo. This describes the pressure field of the
potential vortex outside of the core region.

Incompressible Viscous Vortex

In 1918, G. I. Taylor [17] found a time-dependent closed form soludon of

Equation 1.3 by assuming "

and

1A* r~r * c: V ~ ' * P ~~ .V.
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where v = constant (dynamic viscosity), thereby treating the problem as

incompressible, and ignoring the radial dependence of 1A. The solution for vo

reveals the effects of viscous dissipation and is given by

=mr _.2_

V# TrVt2 e

where m is a constant which, multiplied by p, represents the angular momen-
tum

jo0 2 7r p r vj r dr = prn .

This model describes a vortex which is decaying with time t and has a finite

total kinetic energy and energy dissipation. Near the axis the vortex behaves

like a solid body where the circumferential velocity increases linearly with

radial distance
Vo=mr

and reaches a maximum value p at r = rc . The temporal behavior of
this vortex is basically a dying down and spreading out of the core under

the influence of viscosity. The core radius r. increases with time as the peak

velocity v#p. decreases with time. The vortex can be said to increase in size

and grow weaker in strength. Such behavior is not precisely what is observed

in the present experimental study of compressible vortices. The compressible
vortices in this study do not appreciably increase in size as they grow weaker

in strength (see Chapter 3 Results).
AMA similar type of solution is given by Lamb [18] which has some different -

properties. Lamb's solution is given by

where K is the strength of the vortex. Lamb's vortex has the same character-

istic solid body core, but the velocity decay with increasing radial distance is

weaker than that of Taylor's vortex, approaching that of the potential vortex

and thereby resulting in an infinite kinetic energy, angular momentum and

energy dissipation in an unbounded flow region.

- p p ~.~ ~ ~~\. %
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Compressible Inviscid Vortex

If the vortex is considered inviscid, then there are no entropy gradients and the

flow will be homentropic. In 1930, G. I. Taylor [19] considered the problem

of an isentropic potential vortex. Beginning with the 1/r velocity field of

the potential vortex, and the given condition that the streamlines are circles,

then in each circle there is the same circulation 27rK. Suppose q represents

the speed at radius r then

q

Taylor then uses the isentropic relation

so that r=K[ 1 + 1 Of- 1)

and r will have a minimum value r,j,. when M = oo given by

The ratio r/rni is given by

.r= [1+ 2-

a relation which reveals some interesting features. Note first the existence of

a minimum radius where the Mach number of the flow becomes infinite. At

any radius smaller than ri, there could not be any fluid, which describes an

empty core. There is also a value of r where M = 1 and thus where the vortex

becomes supersonic. By setting M = 1, the radius of the sonic circle is given

by

reoflic = ri

This vortex has three regions. In the central region lies the empty core which

has a radius given by rni. The annular region between rmn and ro,,, contains -

the supersonic flow. The flow is subsonic everywhere outside of the sonic circle.
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Compressible Viscous Heat-Conducting Vortex

In 1960, L. M. Mack [201 attempted to answer the question of whether or

not an ijentropic vortex is possible in a real gas. Mack used the model of

a vortex that is driven by a circular cylinder rotating in a compressible vis-

cous heat-conducting fluid of infinite extent initially at rest. This vortex is

to be distinguished from a free vortex, i.e., one driven by a radial flow car-

rying angular momentum inward. Under these steady-state conditions there

exists temperature, pressure and density variations across the vortex which

are dependent on the rotational speed of the driving cylinder. At a low ro-

tational speed the temperature variation across the vortex is small and the

viscosity coefficient is assumed constant. At higher rotational speeds of the

driving cylinder the temperature variation across the vortex is large and the

temperature dependence of the viscosity coefficient is taken into account.

In this treatment vr = 0 and Op/t = 0, so the Continuity Equation (see

Equation 1.1) cannot be used. The Radial Momentum Equation (see Equation

1.2) becomes
ap pV2

o" r '
which shows the pressure gradient providing the required centripetal force.

The Angular Momentum Equation (see Equation 1.3) becomes

r (L =0,

where the coefficient of viscosity p is dependent on r. It can be seen from this

equation that when p varies along the radius, an irrotational solution is no

longer possible. The shear stress is

r = / r 5

and the Energy Equation (see Equation 1.4) becomes

Okr + r ( =0,

S
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where T is the temperature and k is the coefficient of thermal conductivity.

k also is a function of the temperature and therefore is dependent on r. This

equation relates the work done by the shear stress and the heat transferred

by conduction. In general. an amount of heat must be withdrawn per second

just equal to the power required to maintain the flow in this steady-state

process. Mack solves these equations by a numerical integration method using

the Sutherland viscosity law [21] to model the radial dependence of p. The

calculations show that under these conditions the vortex is not irrotational

and is not isentropic.

Summary of Models

The theoretical models reviewed in this section comprise the bulk of that

aspect of vortex theory which addresses the question of the internal structure

of the vortex. Each model has contributed new information on the internal

characteristics of vortices under different combinations of special conditions.

The 2-D models are of special interest because of their relative simplicity

compared to the 3-D case. In these simpler models the internal structure and

general behavior of the vortex are revealed. These models were discussed in

chronological order of .their development and are listed below:

" Incompressible Inviscid Vortex (Steady).

" Incompressible Viscous Vortex (UnSteady). p

• Compressible Inviscid Vortex (Steady).

" Driven Compressible Viscous Heat-Conducting Vortex (Steady).

This set of models is extended by this Thesis which investigates the following

case:

* Free Compressible Viscous Heat-Conducting Vortex (Unsteady).

UN J,.
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1.3.2 Previous Experimental Work

The theory of unsteady motion around two-dimensional airfoils developed

by Von Karman and Sears [221 predicts the existence of a starting vortex

which develops as the airfoil is put into motion. The vortex subsequently

separates from the airfoil, carrying angular momentum away and leaving a net

circulation around the airfoil, which creates lift. Hollingsworth and Richards

(1955 [23]) utilized this idea as a method of generating 2-D free compressible

vortices in a study of vortex-shock interactions. The vortex was generated in a

rectangular shock tube which had optical windows mounted along the walls of

the tube to preserve the two-dimensional nature of the flow and provide optical

access for flow visualization. A starting vortex is generated as the shock wave

passes over an airfoil which is set at incidence between the inside walls of

the shock tube. As the fully developed vortex moves away from the trailing

edge of the airfoil with the velocity of the free stream, the shock wave is then

reflected from a plane wall at the far end of the tube, and moves back towards

the approaching vortex. The resultant vortex-shock interaction is viewed by

a conventional twin-mirror Schieren system, utilizing a spark discharge in

air as the light source. The photographic results reveal a system of reflected

and diffracted waves (and their respective triple points) which emanate from

the vertices of the airfoil and which can be traced throughout the remainder

of the flow. Also, a system of slipstreams are seen which emanate from the

triple points and roll up into the vortex. This multiply-reflected weak shock •

system does not appear to affect the vortex. The photographs very clearly

show an acoustic wave emanating from the interaction of the vortex with the

strong back-reflected shock. A theoretically derived distribution of intensity

in the sound wave resulting from the interaction between a vortex and a

shock wave is compared with a Schlieren photograph in a follow-up study

[24]. Unfortunately, the Schlieren photographs in these studies do not reveal

anything quantitative about the structure of the vortex and its core. Dosanjh

and Weeks (1965 [251) extended this study by using the same type of shock

0
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tube arrangement for the vortex generation and interaction, but used a Mach-

Zehnder interferometer to record the flow field. The interferograms provide

quantitative information about the spatial density distribution of the vortex

at different times during the flow. Since the vortex is observed to be convected

at almost the free stream velocity, and since there is no drift flow behind the

returning reflected shock, the translational motion of the vortex is halted after

the interaction with the shock. This stationary position of the vortex with

respect to the laboratory made it very convenient for a study of the decay

behavior since it was always in the field-of-view of the interferometer. The

slipstreams that were identified by Hollingsworth and Richards were observed

by Dosanjh and Weeks to exhibit self-similar behavior for an extended period

of time. The vortex itself decays to the point of vanishing after 3 milli-sec. The

vortex flow field was examined for several values of delay time both before and

after the interaction with the shock. Both the core-center density behavior

with time and the spatial density distribution of the vortex at several different

times were plotted. The temporal behavior of the vortex was modeled and

a calculation of the circulation r was achieved by use of a combination of

incompressible and compressible models. Lamb's case of an incompressible

viscous circular vortex

V#= r,- -- e-,~

was used as an approximation to the circumferential velocity distribution; and W.

v, (defined as above) was then substituted into the viscous compressible form

of the Radial Momentum Equation

OP _p

r

to yield a relationship between the density p and vortex strength K. An ad-

ditional assumption of polytropic behavior in the radial direction

P = cp"

is used to complete the set of equations. After integration of the equations, -A

the resulting expression had three free parameters: a time reference t0 , -f and a

I
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third parameter which is a function of the vortex strength K. The expression

was plotted and compared with the experimental density data in order to

deduce values of the parameters for a best-fit. It was found that -y was very

nearly equal to 1.4 and the circulation r was found to be around 3 m 2 /sec with

the airfoil set at 12.5 degrees incidence and a shock strength of P2/P = 2. j.

Using this same method of vortex generation in a shock tube, Meier (1984 [26])

studied the transonic interaction of a similar shock-generated starting vortex

with a second airfoil placed downstream. A Mach-Zehnder interferometer was

used to record the flow field at several different times both during the vortex

convection period and the subsequent interaction period. A most significant

result from Meier's experiments was the visualization of an acoustic wave

which emanated from the interaction. Although there was no detailed study

of the vortex structure itself, follow-up studies (Timm 1985 [271 and Lent 1986

[28]) using Meier's apparatus, examined the acoustic fields and the vortex

trajectories associated with the vortex-airfoil interactions.

The experimental program of this Thesis utilizes this same basic method of

generating a single free compressible vortex inside a shock tube at the Stanford

High Pressure Shock Tube Laboratory (Mandella and Bershader 1984 [29]). A

This study uses an open ended shock tube with an enlarged test section de-

signed to minimize reflected shocks back into the flow. Large acrylic windows

are used to maximize optical access to the flow and a holographic interfero-

metric technique is used to record instantaneous (10 nano-sec) interferograms

of the flow at different delay times. The density information provided by the

holograms is also supplemented by pressure measurements made on the side

walls of the test section along the vortex path.

Yw
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1.4 Outline of Thesis

In Chapter 2, the experiments are described. A general description of the

experimental apparatus, procedures and reduction of data is given. More

detailed information is given in the various appendices.

In Chapter 3, a general description of the experimental results (including some

illustrative samples from the complete data set) is given and discussed. The

complete data set and error analysis is located in the appendices.

In Chapter 4, a detailed analysis is given for the free compressible vortex

utilizing both the equations of motion and the experimental results. Vari-

ous physical properties of free compressible vortices under the test conditions

are calculated (including temperature and velocity profiles). The distribution

and transport of angular momentum inside the vortex, and the competing pro-

cesses of diffusion and convection in the compressible vortex are investigated

in order to gain insight into the roles of viscosity and compressibility.

In Chapter 5, the conclusions of the combined experimental and analytic study

are summarized, including a discussion of the roles of the viscosity and the

compressibilty in the problem. Also, suggestions for further research are given.

. t- - - l t P
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Experiments

of Double Pulsed Holographic Interferometry [30] applied to the shock-generated

flow field. One obtains in this case (2-D flow) a fringe pattern representing a
~series of density contour lines. This form of data not only provides a means of

visualizing the flow, but also provides quantitative global information about

the whole density field of the flow. The light source is provided by a ruby

laser with a 10 nano-sec p~ulse duration; thus, each exposure constitutes an
~instantaneous snapshot. A special test section was designed which utilizes

the flow emerging from the end of a rectangular shock tube. The test section

peevsthe two-dimensional nature of the flow with the placement of two op- :?

posing large acrylic windows which serve as extensions of the shock tube walls."£"'"

~~~The vortex generator consists of an airfoil mounted between the windows at --?
a large angle of attack; it produces a starting vortex resulting from passage

p• 0

~~of the shock. Each time the shock tube is fired, an interferogram is made :

of the flow at some predetermined time. The technique of repeated experi-

menits, with sequential advan'ce of time dola! vs for firing the laser, provides a
time history of the different stages of development of the flow. This technique I

requires a timing system for synchronizing the laser pulse with specific flow
23
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events and for monitoring the shock speed (which indicates the repeatability

of the experiments). Supplementary (non-optical) measurements of the vor-

tex pressure are also made. The density and pressure data are then evaluated

and presented in the form of radial distributions through the vortex center.

This chapter will give a general description of the experimental apparatus,

procedures and data reduction. More detailed information is contained in the

appendices.

2.1 Apparatus

2.1.1 Shock Tube and Test Section

The studies were performed with a conventional shock tube arrangement mod-

ified by an enlarged test section at the downstream end which is open to the

atmosphere. The shock tube and test section have a rectilinear cross section

designed to produce a two-dimensional flow. Figure 2.1 shows a sectional view

of the test section and the portion of the shock tube to which it is attached

(the driver section is not shown). Appendix A contains a complete description

of the shock tube and the experimental operating conditions. The dimensions

in Figure 2.1 are given in centimeters (cm).

Shock Tube

The shock tube has a square cross section of 5 cm on a side. The full length

between the driver section and the test section is 6 m (meters). This configu-

ration delivers a uniform flow of air behind a Mach 2 shock for a duration of

p 5 milli-sec (see Appendix A). A specially prescribed aluminium diaphram

separates the pressurized driver section from the rest of the shock tube (which .

is open to the atmosphere). The driver section is 1.8 m long. The shock is

initiated when a sufficient pressure difference bursts the diaphram. The shock

NNN
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Figure 2.1: Shock Tube and Test Section.

then travels down the tube into the test section. In Figure 2.1 the shock is ,

represented by a heavy straight line with an attached arrow showing the direc-
tion of travel. In these experiments the downsteam pressure was atmospheric;

under these conditions the shock front is highly planar before entering the test

(expansion) section.

Test Section

The test section has a rectangular cross section which allows the shock to

diffract only in a cylindrical fashion, as illustrated by the heavy curved line in

Figure 2.1; thus, the 2-D feature of the flow-field is retained. Also shown in
Figure 2.1 is the 25 cm x 36 cm opening for the insertion of acrylic windows
which are mounted parallel to each other on opposite sides of the test sec- .,

tion. The inside surface of each window is flush with the inside surface of the

shock tube, thus providing for a two-dimensional flow configuration. The win-
dows permit optical access over a rather sizable region of the flow field. Two

,-
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additional opposing sets of small windows (shown in Figure 2.1 as darkened

circles) are mounted into the shock tube walls about 65 cm upstream from the

area-change station. These small windows permit shock time-of-flight mea-

surements to be made with the aid of two laser beams and suitable optical

detectors. Shock passage deflects each laser beam in turn. A microsecond

counter is used to record the interval of time between the two signals from the

detectors. Given the knowledge of the precise distance between the two beams

(9.8 cm), this type of measurement yields the shock velocity, which is used to

calculate other properties of the flow behind the shock (see Appendix A). The

second of these signals is also used to start a timing sequence which fires a

ruby laser at a predetermined delay time for the purpose of recording a holo-

gram of the flow in the test section. The test section as shown in Figure 2.1 is

integral to the shock tube and is open to the atmosphere by way of the top,

bottom and end ports identified by the dashed lines. These ports allow the

expanding shock and flow to continue into the laboratory room and thereby

eliminate a major portion of shock reflections back into the test section.

Vortex Generator

A NACA 0018 airfoil is mounted between the two large acrylic windows of the

test section 18 cm downstream of the shock tube end. The expanding shock

passes over this airfoil and generates a vortex. This airfoil is mounted such that

its quarter-chord-point (identified by Von Karman and Sears [22] as the center-

of-lift of the airfoil) is positioned along the centerline of the flow. It is held

in position by means of 1/16 inch diameter alignment pins and corresponding

holes which are drilled into the windows and the airfoil. Additional sets of

pins and holes are used to keep the airfoil in a fixed inclination of 30 degrees

as shown in Figure 2.1.

NO
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2.1.2 Optical System

~The method of double pulsed holographic interferometry (see Vest [301) is the

primary diagnostic tool used in these experiments. The optical arrangement

is shown schematically in Figure 2.2 which includes a top view of the shock
. tube and test section. The time-of-fight measurement system consisting of

two He-Ne lasers and two optical detectors is also shown in Figure 2.2.

Light Source

The light source for recording the holograms is provided by a pulsed ruby

~laser which is designed to produce a sufficiently coherent pulse of light having

an energy of,-, 100 milli-joules and duration of ;z 10 nano-sec when triggered
by an external signal. The ruby laser is designed for single mode operation

and produces a 2 mm (milimeter) diameter beam at 6943 (see Appendix
wB for a complete description of the ruby laser and its operation).

LihtSorc
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Object Beam

In general, a hologram is made by mixing two coherent beams on a photo-

graphic plate. The first optical element downbeam of the laser is the beam

splitter which divides the emerging beam (from the ruby laser) into two coher-

ent beams (referred to in Figure 2.2 as the object beam and the reference beam).

The object beam first encounters a dielectric folding mirror which directs the

beam through a short focal-length (f=15 mm) piano-convex lens. The latter

expands the beam for subsequent collimation by a long focal-length (f=300

cm) spherical front-surface mirror (whose distance from the lens is equal to

its own focal-length). The collimated object beam is 25 cm in diameter, per-

mitting a sufficiently large area of the flow to be recorded. The beam is then

directed through the test section windows as shown in Figure 2.2. Care is

taken to assure that the light is perpendicular to the test section windows, a

feature that is important for accurate evaluation of the holographic interfer-

ograms (see Vest [30]). The inside surface of the second window (adjacent to

the lens) has a centimeter grid scribed on it. A 35 cm diameter imaging lens

(shown in Figure 2.2) is used to reduce the diameter of the object beam in

order to collect all the information of the flow on a smaller holographic plate.

This imaging lens has a 52 cm focal length and is positioned 158 cm from

the scribed surface of the window, resulting in a demagnified image (a factor

of 1/2) of the scribed grid at the position of the holographic plate (which is

79 cm from the lens). The resultant interferogram (showing the flow density

contours) will then include a superimposed image of the grid to serve as an aid

for scaling and orientation of the flow for later analysis. The deagnification

of this imaging system allows a large area of the flow in the test section to be

imaged onto a smaller (4 x 5 in) holographic plate.

Reference Beam

As illustrated in Figure 2.2, the reference beam does not pass through the

flow in the test section. In order to maximize the quality of the holographic

4
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recording process, the reference beam (which passes through the beam splitter

in Figure 2.2) must travel the same distance as the object beam before being

remixed on the holographic plate. The difference in the optical path lengths

between the reference and object beams must be less than the coherence

length of the laser [30], which in this case is about 10 cm (see Appendix B).

The two dielectric folding mirrors shown in Figure 2.2 direct the reference

beam towards the holographic plate and are positioned such that this optical-

path-length matching condition is satisfied. The reference beam is expanded

by a negative-focal-length lens before it remixes with the object beam on the qWM

plate.

Holographic Plate

The object and reference beams both have diverging wavefronts at the plate. I
The angle between these beams at the center of the plate is 15 degrees but

varies slightly at different positions on the plate because of the divergence of

the beams. Off-axis holography requires a high-resolution recording medium.

A recording medium with too low a cutoff spatial frequency has detrimental
effects on the quality of the hologram. The spatial frequency required in this

case can be estimated by considering the interference of two plane waves at

a 15 degree incidence. The period d of the sinusoidal intensity distribution is

given 
by (31]

where d is the spatial period and a is the angle between the plane waves. The

spatial frequency given by lid is less than 400 cycles/mm in this case. The

holographic plates used for the experiments are made by Agfa- Gevaert (Type:

10E75 NAH). They are 4 x 5 inch glass, coated with a silver-halide emulsion

that is specially sensitized for the ruby laser wavelength. The plates have an -N

upper spatial frequency cutoff at 3000 cycles/mm (321, which is more than

sufficient for this application. The development of the plates after exposure

is accomplished by a three-step developing procedure (developer bath (D-19),



30 CHAPTER 2. EXPERIMENTS

followed by a stop bath and then a fixer bath), typical of that used in standard

black and white photography.

Double Exposure Method

A first exposure of the holographic plate by the object and reference beams

is made before the shock tube is fired. This creates a hologram that contains

the phase information of the whole optical system (including the windows). A

second exposure (which creates a second superimposed hologram on the same

plate) is then made a predetermined time after the shock tube has fired. This

second hologram contains the same phase information of the optical system as

the first hologram, but also includes additional phase information due to the

presence of the flow between the windows. Different regions of the object beam

wavefront are shifted in phase according to the distribution of the density of

the flow. The specific refractivity k, of the air relates the refractive index n

and the mass density p in the relation

n - I = kop.

For air k. is relatively constant over the visible portion of the spectrum, equal

to 2.3 x 10 - 4 m 3/kg [331. The process as just described results in two super-

imposed holograms on one plate which may be reconstructed simultaneously

with a single continuous light source (sodium lamp) that is positioned at the

same angle relative to the plate as the original reference beam. (The exposed

plate is first developed before this reconstruction process.) Upon reconstruc-

tion, the mixed holographic images are photographed and the resulting image

is a set of phase contour lines (fringes) which represent the phase difference

between the wavefronts of the two object beams (see Figures 1.1--1.4). As-

suming nothing has changed in the optical system between the first and second

exposures (except for the addition of the flow in the second exposure), then

the phase difference that is represented by the fringes on the photograph is due S

only to the presence of the flow during the second exposure; thus, the fringes

Wi
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allow visualization of the flow. These fringes can then be directly related to

density contours of the flow. (See Appendix C for a complete description of

Double Pulsed Holographic Interferometry.)

2.1.3 Timing Electronics

The timing electronics provide a dual function of synchronizing the laser pulse

with a specific flow event and also recording the time of flight of the shock.

Laser Pulse SynchronizationFS
The double pulsed holographic method requires precise synchronization be-

tween the firing of the laser's second pulse and the desired event to be recorded

during the flow. The flashlamp of the Ruby Laser must be turned on ab 't

1000 micro-sec before the laser pulse is needed (see Appendix B). A trigger

signal simultaneously turns on the flashlamp current and starts a 1000 micro-

sec delay circuit, which then triggers the Q-switch power supply, resulting in a

10 nano-sec laser pulse. An adjustable digital delay generator (DDG) is used

between the shock wave detector and the laser power supply. The total delay

of this configuration is the sum of the preset DDG setting (0--1000 micro-ser)

plus the fixed Q-switch delay (1000 micro-sec). Figure 2.3 shows a schematic

diagram of this set up including the clock circuit for measuring the speed of

the shock.

Shock Speed Measurement

Information about the shock speed is used mainly to monitor the repeatability

of shock strength and flow conditions for each run of the shock tube. Since

it is only possible to make one interferogram per shock, then it is necessary

to repeat the same conditions a number of times. By use of the technique

of repeated experiments with sequential advance of time delays for firing the

i ',"9
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Figure 2.3: Timing Electronics for Measurement of Shock Speed and Synchroniza-
tion of Laser Pulse.

laser, a time history of the flow events is obtained. The two HeNe laser

beams used for this purpose have a diameter of .5 mm and are 98 mm apart.

The errors in the speed measurement are due to the finite diameters of the

beams and the resolution of the counter (clock). The finite size of the beams

introduce a systematic error with an upper limit of 1%. Here, systematic

error is less significant than random error. In this connection the resolution of

the counter is. 1 micro-sec and the typical time of flight of the shock between

the beams is 143 micro-sec; the resulting random error is less than. 1%. The x

latter can be decreased further by increasing the distance between the beams.

Operation of Timing Circuit

The x-t plot in Figure 2.4 describes the sequence of events in a typical ex-

periment, along with the corresponding operation of the timing circuit. Su-

perimposed on the x-t plot is a diagram of the shock tube and test section.

lip
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Figure 2.4: x-t Plot of Shock Wave and Vortex.

The two crosses represent the approximate positions of the HeNe beams for
measuring the shock speed. The end of the shock tube (where the flow enters

the test section) is used as the zero reference point in the x direction. The

zero time reference is taken when the shock is at the position of the first HeNe
beam (which is shown to be ; 75 cm from the end of the shock tube). The 0

x-t plot of the shock in Figure 2.4 is a straight line before it reaches the end
of the shock tube. As the shock wave passes by the first HeNe beam at t=O,

a signal from the corresponding detector triggers the clock to start counting.
As the shock passes the second HeNe beam (which is 65 cm from the end of
the shock tube), the corresponding signal triggers the clock to stop and also

simultaneously triggers the DDG. The time interval measured on the clock is
about 143 micro-sec for a Mach 2 shock wave. The preset delay on the DDG

in this illustrative case (Figure 2.4) is about 857 micro-sec so that its out-
put pulse occurs at t=1000 micro-sec. The output pulse from the DDG then

I _~ .- J
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turns on the flashlamp current and simultaneously triggers the 1000 micro-

see Q-switch delay (see Figure 2.3). In the case illustrated in Figure 2.4, it

is shown that the flashlamp current is turned on and the Q-switch delay is

triggered just before the shock enters the test section (at t= 1000 micro-sec).

As the shock enters the test section, it is diffracted and begins to slow down

at z 5 cm where the section of the shock near the centerline of the flow

begins to respond to the geometrical transition between the shock tube and

test section. This delay in response of the shock to the geometrical changes of

the tube walls is due to the supersonic velocity of the shock (Mach 2). At this

point (z ; 5 cm), the slope of the x-t plot of the shock slowly increases, which

represents a proportional decrease in the shock speed along the centerline of

the flow.

The x-t plot also shows the generation of the vortex at z ;t 20 cm, the

coordinate of the trailing edge of the airfoil. The corresponding x-t plot of

the vortex is shown in Figure 2.4 as a branch which is connected to the shock
wave plot at the generation point of the vortex. This branch, has a larger

slope than the shock wave plot. This difference in slope is expected because

of the relative difference in the speeds of the vortex and the shock wave. The

shock at this point is traveling at about 465 m/sec and the vortex is traveling

at about 180 m/sec which is approximately the fluid velocity behind the shock

(see Appendix D). Finally, the Q-switch is energized which pulses the laser at

t=2000 micro-sec. The resulting interferogram contains flow-field density data

for the case when the vortex and shock are at the locations shown in Figure

2.4 (the vortex is at z s 30 cm and the shock is at z - 45 cm). As shown

in Figure 1.1, the DDG setting may then be increased by 20 micro-sec and

the experiment repeated, resulting in a new interferogram of the vortex and

shock in new positions corresponding to the increased delay time. If the shock

tube flow is repeatable, then the new interferogram would accurately represent

the flow at a time which is 20 micro-sec later than the previous interferogram.

This technique of repeated experiments with sequential advance of time delays

for firing the laser provides a time history of the density distribution in the

*Sa5~~~.5 w'%'.% ~VV!
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flow field, including the density distribution within the vortex.

2.1.4 Pressure Transducer

With the aid of the superimposed reference grid, the coordinates of the center

of the vortex are located in each interferogram. A series of sequential inter-

ferograms as described yields the vortex trajectory. A pressure transducer

mounted in the window with its pressure-sensitive end mounted flush at the

inside window surface records the static pressure of the vortex as it travels

along its trajectory (see Appendix E for a complete description of the pres-

sure transducer and the associated electronics for data acquisition). This is a

temporal pressure response of the traveling vortex at one point fixed relative

to the laboratory and is used to estimate the spatial pressure distribution in

the vortex by means of a Galilean transformation of the data. The latter is

performed under the physical assumption that the spatial distribution of the

vortex does not change appreciably during the time interval when the vor-

tex travels a distance equal to its own diameter, i.e., the duration of time

required to make the pressure measurement across the diameter of the vortex. S
The velocity of the vortex (- 180 m/sec) is measured in several ways (see Ap-

pendix D for a complete description of the vortex velocity measurements) and

is clearly important for obtaining radial pressure profiles across the vortex.

The diameter of a vortex is not well defined, but for this purpose the diameter

of interest is defined across the region where the density and pressure gradi-

ent of the vortex is observable (see Figures 1.2 and 1.3). The diameter of the

vortex by this convention is about 1 cm; and, given the vortex velocity (180

m/sec), the duration of the pressure measurement turns out to be about 50

micro-sec. The time-response of the pressure transducer must be better than

20 kilocycles/sec in order to accurately follow the temporal pressure changes

of the traveling vortex.

Another factor affecting the accuracy of the pressure data is the magnitude

of the actual pressure sensitive area of the transducer which is .028 inches in

Luv % .... ...
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diameter. The transducer diameter is then about 7% of the vortex diameter.

The combined effects of the limited time-response and the finite size of the

transducer results in a spreading out of the pressure distribution. These effects

can be partially corrected for when evaluating the data (see Section 2.3.2

Evaluation of Pressure Data). The pressure data is originally recorded with

an oscilloscope and then a photograph of the trace is later digitized for further

processing.

2.2 Experimental Procedures

The two experimental methods, namely holographic interferometry and pres-

sure transducer response measurements yield quantitative information about

the density distribution and the pressure distribution of a free vortex that is

generated under a specific set of repeatable conditions. As was noted, the

method of holographic interferometry is used repeatedly at different delay

times and thus provides the two-dimensional density distribution of the vor-

tex at different positions along its path, corresponding to different ages of the

vortex. Thus, these measurements constitute a time-dependent study of the

vortex. The method used to obtain pressure information provides the pres-

sure distribution of the vortex at a single position along the vortex trajectory,

which corresponds to a vortex of a specific age. The following two sections

will describe the conditions under which the interferometric and pressure data

are obtained for this study.

2.2.1 Holographic Interferometry Data

For this study, the time interval used between successive experiments is about

50 micro-sec. A total of 21 interferograms are made for a complete study of

the flow. These 21 successive experiments, in 50 micro-sec intervals, covering

a total range of 1000 micro-sec, are required in order to follow the development
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of the flow from the time the shock enters the test section to the time when

the traveling free vortex reaches the downstream edge of the window and thus

exits from the field-of-view. The faster moving s1- ck passes the downstream

edge of the window much sooner than the vortex and is therefore visible in

only the first 12 interferograms. In the actual experiments, the DDG setting

(see Section 2.1.3) is advanced by 50 micro-sec for each successive experiment.

Since the speed of the shock is not exactly the same in each experiment, an

error occurs in the timing of the flow events (see Appendix C for a com-

plete description of the timing errors) and the actual time intervals are either

slightly less or more than the 50 micro-sec DDG setting. Figure 2.5 shows the

25 x 36 cm window of the test section along with the positions of the shock at

the centerline of the flow corresponding to :, 50 micro-sec intervals (indicated

by the numbers 1--+12) as recorded on the first 12 interferograms. Also shown

in Figure 2.5 is the vortex trajectory (vortex positions at ; 50 micro-sec in-

tervals) which is recorded on Interferograms #6---#21. The x-y coordinate

system in Figure 2.5 has the centerline of the flow (centerline of shock tube)

as the zero reference for the y coordinates and the end of the shock tube

(beginning of test section) as the zero reference for the x coordinates. Figure

2.6 is a cloae-up of Figure 2.5 showing the trajectory of the vortex in more 0

detail (the position of the center of the vortex as recorded in Interferograms

#6-#21 is plotted with respect to the same coordinate system as shown in

Figure 2.5).

2.2.2 Pressure Data

Pressure transducer response measurements of the vortex are obtained during •

several shock tube runs in order to check repeatability. Figure 2.6 indicates

the location of the pressure transducer with respect to the vortex trajec-

tory. The pressure measurement requires a time duration corresponding to

the time it takes for the full vortex diameter to travel past this point (- 50

micro-sec). One of the physical assumptions used in the evaluation of the

-° . . .
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Figure 2.5: Positions of Shock and Vortex at ;zz 50 Micro-Sec Intervals.
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pressure data is that a relatively small change in the vortex structure takes

place during the 50 micro-sec time interval of the pressure measurement. This

slow-change assumption allows the time-response of the pressure transducer

to be transformed into a radial pressure distribution of the vortex by means

of a Galilean transformation, as mentioned earlier. The pressure transducer

is located between the two vortex positions #16 and #17 as shown in Figure

2.6. Interferogram #16 gives the density profile of the vortex immediately
before the pressure measurement and Interferogram #17 gives the density

profile immediately after the pressure measurement. These two density pro-

files can then be compared (see Appendix H, Figure H.15) in order to check

the validity of the slo'w-change assumption which is used in the evaluation of

the pressure data.

2.3 Data Reduction Procedures

2.3.1 Evaluation of Interferograms

Physical Considerations

Interferometry of plane flow fields utilizes a straightforward relation to deter-

mine the density p(z, y) as a point function measurement of the fringe shift

S(z, y). If L denotes the distance spanned by the light beam in the direction

of the ignorable coordinate z, then

p(z,y) PO = AS(XY)

where p. is a reference density related to the no-flow fringe pattern, A is the

light wavelength, and ko is the specific refractivity of the air (see Section 2.1.2).

The value of L is given by the distance between the windows (5 cm). In this

study the density reference Pa corresponds to the density of the air directly 0

behind the shock wave along the centerline of the flow. This is calculated using

sM
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the shock relations and the known value of shock Mach number. The fringe

shift in this case corresponds to a density change of .060 kg/m 3 (from one dark

line to the next adjacent line in the interferogram), which is approximately

1/20 of atmospheric density at sea level.

The interferogram are evaluated by means of the above relation which is valid

under the following conditions:

* The flow is two-dimensional.

* The light beam is not refracted as a result of the density gradients.

The test section is designed to rotate 90 degrees about the axis of the shock

tube. Interferograms made from this angle allow the two-dimensional flow

assumption to be checked by observation (see Appendix C for further details

on the testing of the two-dimensionality of the flow and the calculation of

errors due to the density gradients of the vortex).

Evaluation Procedure

Figure 2.6 shows the positions of the vortex in Interferograms #6-*#21 which

represent = 750 micro-sec of the vortex lifetime as it travels a distance of

about 12 cm. After an initial growth and adjustment period during the first

100 micro-sec (see #6, #7 & #8 in Figure 2.6), the vortex follows a reason-

ably linear path at a constant velocity during the latter ; 650 micro-sec. It

is this latter period which is of interest in this study and thus a careful eval-

uation of Interferograms #8--+#21 is neccessary. The evaluation of these 14

interferograms reveals the radial density distribution of the vortex during this

period of time. The density data is derived directly from the interferograms

by the following procedure:

(a) The fringes in each interferogram are identified and numbered with re-

spect to the reference fringe directly behind the shock wave. " .

(b) The image of the vortex from each interf~rogram is enlarged (see Inter-

ferograms in Appendix C).

iV
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(c) The center of the vortex is identified.

(d) A horizontal line (x direction) is drawn through the center of the vortex.

(e) The center of each fringe is identified along the line.

(f) The radial distance of each numbered fringe (along the line) from the

center of the vortex is measured by hand several times with a micrometer

and an average value is calculated. These values of r are given negative

and positive values depending upon which side of the vortex center they

were measured from. These negative and positive values of r distinguish

the two different regions of the vortex on either side of its center; a

convention followed throughout this study. S

(g) Using the known value of the air density directly behind the shock as

a reference (see Appendix E, Section E.5), the density represented by

each fringe and the corresponding radial distance is tabulated for the

, 25 fringes in each of the 14 interferogrp.ms yielding 14 separate radial

density data sets (see Vortez Density Tables in Appendix I).

(h) The corresponding age of the vortex is recorded for each radial density

data set. This value of t is used to identify each radial density profile

and is used to characterize the time-dependence of the data.

(i) The data is entered into a computer for further reduction (see Section %

2.3.3).

Although the radial density distribution of the vortex is assumed to be ax-

isymmetric throughout most of this study (under this assumption it would .' .
LZ.

be only neccessary to sample the radial density profile along any one radius),

the above procedure samples the density across the whole diameter of the
vortex (-r--- r = 0 -+r), which allows a check of this assumption. The errors .1'

found in the subsequent curve fitting of the data to a radially symmetric func-

tion (see Section 2.3.3) give an indication of the validity of the axisymmetric S

assumptions used in this study.
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2.3.2 Evaluation of Pressure Data

Physical Considerations

The fast-response Silicon Diaphram Pressure Transducer has a small measur-

ing area and is flush-mounted in the acrylic window at a single location along

the path' of the vortex (see Figure 2.6). The gauge measures the pressure at

the wall surface as the vortex travels by, and a time history of the pressure

at that point on the wall is recorded. The temporal pressure information

can then be transformed into a radial pressure profile of the vortex under the

following conditions:

" The flow is two-dimensional.

" The vortex convection speed is linear, constant and known.

* The center of the vortex passes over the gauge.

* The vortex does not change appreciably as it travels one vortex diameter. 0

* The pressure-sensitive area is small compared to the size of the vortex.

* The time-response and sensitivity of the gauge is sufficient to track the

pressure profile as it passes over.

Along with the need of a well-characterized flow, the accuracy of the pressure

measurements are dependent on the careful positioning of the gauge and the

specifications of the device itself. These considerations must be accounted

for in the evaluation of the pressure data. In this study, the pressure data is

deconvolved to correct for the limited time-response and physical size of the

device, and the proper positioning of the gauge is verified (see Appendix E).

Also, the flow conditions above are sufficiently met (see Appendix C).

Evaluation Procedure

The pressure response of the transducer is recorded by photographing the os-

cilloscope traces during each shock tube run. For this study, two oscilloscopes

•I
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were used simultaneously at different scan rates and triggered at different de-

lay times in order to capture both the time-response of the whole flow and

the time-response of only the vortex. The pressure data is evaluated by the

following procedure:

(a) The photographed traces are digitized by hand with a digital tablet and

the information is stored in a computer.

(b) The stored information, which represents the voltage vs. time-response

at a fixed sampling rate is then transformed into pressure vs. time infor-

mation by means of a calibration factor.

(c) The pressure vs. time curve for the passing shock is used as an approxi-

mation of the step-response of the system. This information is used along

with the aid of a Fast Fourier Transform (FFT) program to deconvolve

the pressure signal (of the vortex) which has undergone a spreading effect

as described in Section 2.1.4.

(d) The deconvolved data is then transformed from a pressure vs. time curve

to a radial pressure distribution by means of a Galilean transformation
using the known convection velocity of the vortex found by the time-of-
flight measurements described in Appendix D.

A complete description of the digitizing/sampling, calibration, deconvolution

and transformation processes is given in Appendix E.

2.3.3 Curve Fitting of Data

The evaluation of the interferograms and pressure measurements results in

data that represent the radial distributions of these properties inside the vor-

tex. It is desired to use this information to calculate other additional physical

properties of the vortex. For this purpose it is convenient to approximate the

density and pressure distributions of the vortex by fitting curves to the data.

A least squares curve fitting method is used to find compact mathematical

Lp.
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representations of the density and pressure data. These empirical formulas

are then used in the governing equations of a theoretical model of the vortex

(see Section 1.1.2, Chapter 1) to calculate other physical properties. A de-

scription of the curve fitting method is given in Appendix F. Descriptions of

the results, including an analysis of errors, are given in the following chapter

and in the appendices.

IF
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Chapter 3

Experimental Results and

Physical Interpretation

0

3.1 Vortex Density

Evaluations of the interferograms supplemented by the curve fitting proce-

dures (as described in Chapter 2) result in 14 individual density distributions

of the vortex, corresponding to incremental changes in the vortex location

and age. These distributions describe the vortex as measured at Stations

#8--+#21 shown in Figure 3.2 which indicate the measured locations of the

vortex center along the convected path. The results of the interferogram eval-

uations are given in the tables in Appendix I ( Vortex Density Tables). The

graphical results of both the density evaluations and the respective curve fit-

ting investigations are given in the figures in Appendix H (Vortez Density

Curve,). A sample of these results is shown in Figure 3.1. The curve and

points plotted in Figure 3.1 represent the density distribution of the vortex

at Station #16. This particular density profile (#16) is significant because it

represents the density of the vortex at a location and time which corresponds

45
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to that of the pressure measurements. This correspondence can be observed

in Figure 3.2. The crossed lines in Figure 3.2 indicate the position of the

pressure transducer along the convected path of the vortex center. The re-

sults of the pressure measurements (see Section 3.2) show that the pressure

variations (associated with the vortex) generally extend , 5 mm from the vor-

tex center. The location of the vortex center in Experiment #16 (as shown

in Figure 3.2) is 5 mm upstream of the pressure transducer; and thus,

pressure measurements of the vortex begin at this time. The corrected vor-

tex age in this location is t=496 micro-sec, which is determined by methods

given in Appendix C. The density distribution shown in Figure 3.1 is used

along with the corresponding pressure results for further calculations of other

vortex properties (see Chapter 4). The density is given in units of kg/m and

is plotted as a function of the radius r. The density is evaluated across the

diameter of the vortex and by convention, the independent variable r in the

density plots is allowed to take on negative and positive values on the opposite

sides of r=O. The 38 data points in this plot represent the positions of the

central region of each fringe in Interferogram #16 (see Interferogram #16 in

Appendix C). Table 1.9 in Appendix I gives the results of the evaluation of

Interferogram #16. Figure H.9 in Appendix H shows the results of the curve

fitting to the data in Table 1.9. The solid line in Figure 3.1 represents the

best-fit curve to the data. The curve chosen for this purpose is a modified

Cauchy distribution given by
Ap~t M

p(,t) = j (t) - +pt

where the three parameters po, (t), Ap (t) and Ar (t) represent, respectively,

the ambient density of the flow, the well-depth of the curve and the half-width

(half width at half maximum) of the curve respectively. Each of these three

parameters are functions of time and represent three different characteristics

which define the shape of the density curve; thus, the time dependence of

these parameters describe the structure and behavior of the vortex. The

values of po, (t), Ap (t) and Ar (t) corresponding to the time t=496 micro-sec,
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Figure 3.1: Vortex Radial Density Profile (from Interferogram #16, t=496 mi-
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are given in Figure 3.1. This figure also shows a plot of both the data and the

fitted curve. A closeness-of-fit analysis of the curve in Figure 3.1 reveals an

RMS deviation of the residuals to be .021 kg/m 3 (see Appendix J, Table J.1),

which when normalized with respect to the well-depth Ap, becomes 2.1%.

The fringe location error associated with the digitization process is found to

have an RMS value of .024 cm (see Appendix J, Table J.2). This type of

random error is found to be largest at the outer boundaries of the vortex

where the fringe widths become large. The general error in the fringe shift

due to the digitization process is found by normalizing this RMS value with

respect to the average value of radii measured (.241 cm), which gives a value

of 10%. Another type of error, namely the error in fringe position due to the

refraction of the light rays as they pass through the vortex, is approximated

by a simple ray bending analysis (see Appendix C). By using the density

parameters given in Figure 3.1 (Experiment #16), a value of .0066 cm is

calculated as the maximum transverse displacement of a ray due to bending

by the density gradient of the vortex (see Table C.1, Appendix C). This

maximum bending occurs in the region of the vortex near r = Ar where the

distance between the fringes in the interferogram are about .015 cm (see Table

1.9, Appendix I); thus, the maximum resultant error in fringe shift caused by

this refraction is about 44%. This ray bending causes the system of fringes to

move systematically, resulting in a spreading of the density profile.

The values of the parameters p, (t), Ap (t) and Ar (t) are found for each case

(Experiments #8--+#21), using a least squares curve fitting method (described

in Appendix F), and correspond to a particular time t associated with the

vortex age. These results are shown in Appendix H ( Vortex Density Curves)

and tabulated in Table 1.15 (Appendix I). The general behavior of the vortex r -

density can be observed from this information and is summarized below:

The ambient density p,, characterizes the density of the flow outside of

the vortex. This parameter decreases slowly with time due to the nature

of the expanding flow behind the curved shock. Only a 12% change

-~ % J% ~< -,~:vJV
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occurs in this parameter during the time period under investigation (750

micro-sec).

" The well-depth Ap characterizes the intensity of the vortex. It is the

whirling motion of the vortex flow which contributes to the large density

drop in the center due to the centrifugal reactions. A 45% change occurs

in this parameter during the time period investigated.

" The half-width Ar characterizes the size of the vortex by identifying the

radial distance at which the density drop in the vortex is at half the

peak value. The time behavior of this parameter is a measure of the

relative growth of the vortex and is found to be a slow function of time

compared to the rapidly decreasing well-depth. A 6% change occurs in

this parameter during the time period investigated.

The well-depth and the half-width parameters are basic factors in characteriz-

ing the structure and behavior of the vortex. It is convenient to normalize this

distribution with respect to the ambient density, p,., resulting in a function

with only two parameters

p(r,t) = 1 Apo (t)

where Ap" (t) is now the normalized well-depth. The normalized distributions

for the 14 experiments are given in Appendix H.

The three density distributions taken from Experiments #10, #14 and #18
are representative of the vortex at three locations which are approximately

4 cm apart spatially and 200 micro-sec apart in time. These locations are

identified in Figure 3.2 by the heavy arrows and the results from the inter-

ferograms are shown in Figures 3.3, 3.4 and 3.5. The normalized results

from these three experiments are plotted together in Figure 3.6, which illus-

trates the time behavior of the shape of the density curves. In this form there

are only two time-dependent parameters which characterize the shape of the

curve: Ap" (t) and Ar (t). The best-fit values for these parameters are plotted
curveC

.6
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Figure 3.5: Vortex Radial Density Profile (from Interferogram #18, t=598 mi-
cro-sec).
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with respect to time t in Figures 3.7 and 3.8. The solid line in Figure 3.7

is a best-fit curve to values. The curve is a two parameter exponential decay

function given by

Ap(t) = Ape r

where the parameter Ap: represents the initial value of the normalized well-

depth Ap* at t=0 and the parameter r represents a characteristic decay time

of Apt. It is observed that the time period defined by t = 0 --* t = r is one in

which the vortex is in a highly compressible state. This curve was fit to the 14

equally weighted values of Ap" as given in the figures in Appendix H. The 14

points are shown in the plot and are superimposed over the plot of the curve

in order to illustrate the closeness-of-fit. The points from Experiments #10,

#14 and #18 are indicated by the arrows in Figures 3.7 and 3.8. Use of the

exponential decay function as an empirical formula to describe the unsteady

well-depth is consistent with the following logic:

* It has an initial finite value at t=0.

" It asymptotically approaches zero with increasing time.

" This function has a minimal number (2) of free parameters.

The values of Ar with respect to time are not quite as well-behaved as seen

in Figure 3.8, but after an initial decrease in value during the first three

experiments, the parameter Ar slowly increases. It was decided to neglect

the first two points of each set for the curve fitting. A slowly increasing linear

function was found to fit the set of points from Experiments #10--#21. This

function and the values of the parameters for a best-fit line are shown in a,

Figure 3.8. The parameter Aro represents the initial value of Ar at t=0 and -,

the parameter 0 represents the rate of growth of the parameter Ar. The

points are seen to have a small oscillatory component about the fitted line.

The equations and constant values given in Figures 3.7 and 3.8 substituted
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Figure 3.7: Results of Curve Fitting to Time Sequence of Vortex Well-Depth Pa-
rameters.

into the equation given in Figure 3.6 yield

Ap'* e -"
p"(r,t) = 1-

Ap, = .898

Ar0 -= .143 cm

T = 1325 ps

e =57.2 cm/s,

which is an approximate representation of the normalized density data from

the 12 experiments #10--#21. A closeness-of-fit test of this formula to the

data set reveals an RMS deviation of the residuals to be .0388 kg/m, which

when normalized with respect to Ap = 1.076kg/m 3 , becomes 3.6% (see Ap-

pendix J, Tables J.3---J.12). Each of the 4 constants in this relation is eval-

uated by the curve fitting procedure, and characterizes a different aspect of
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Figure 3.8: Results of Curve Fitting to Time Sequence of Vortex Half-Width Pa-
rameters.

the vortex behavior. The first two constants (Ap. = .898 and Aro = .143 cm)

represent the radial density distribution at t=O. At time t, the density ratio

across the vortex is given by

Poo 1 I
p.o - AP 1- Apo.(t)

which has an initial value at t=O of 9.8. The halfway point of this change is

given by Aro = .143 cm. The last two constants (r = 1325 micro-sec and

e = 57.2 cm/sec). describe the time behavior of the vortex. A characteristic

lifetime of the vortex given by r = 1325 micro-sec represents the time it takes k'

for the well-depth of the vortex density profile to go from its initial value to

the value given by

Ap= (A Apo.

In this latter case, the density ratio across the vortex is 1.5, which is greatly 5

reduced from the initial factor of 9.8. The vortex can be said to be in d state

~~~~~~~~-~~~~~~I M%1 PfP ~ ~ * ~~** ~ .. ** ~ ~ p .V V~~
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of high compreaaibility during this first 1325 micro-sec. The growth rate of

Ar is given by E = 57.2 cm/sec which describes the behavior of the density

half-width. The density haff-width Ar increases by only a factor of 1.5 during

the first 1325 micro-sec of the vortex lifetime, whereas during this same time

period, the density ratio decreases to 1/7 of its initial value. Thus, the width

of the vortex density profile does not increase rapidly as compared to the rate

of the decreasing well-depth. N

3.2 Vortex Pressure

The complete results of the pressure experiments and a description of the

processing of the data are detailed in Appendix E. The following is a descrip- z.. -

tion of the final form of the pressure data and the results of the curve fitting

procedure.

Results of Curve Fitting

Figure 3.9 shows the vortex pressure data in their final digitized form and

the results of the curve fitting of a modified Cauchy function to the data.

Appendix E conta -s a complete description of the digitization and further

processing of the pressure data. There are 84 equally spaced points plotted

in units of N/m 2 (or pascals) as a function of radial distance from the center.

The superimposed solid line in Figure 3.9 represents the best-fit-curve of

the same form as that used for the density distribution (modified Cauchy

distribution). This pressure distribution is given by

P(r,t) = Po,

N
P. = 152100-

AP = 107300-L
M2

'I
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Arp = .117 cm,

in which the three constant parameters characterize the profile in parallel

with that discussed in the preceeding section. A closeness-of-fit test com-

paring this formula to the data reveals an RMS deviation of the residuals

to be 6,001 N/m 2 which when normalized with respect to the well-depth

AP = 107,300 N/m 2, becomes 5.6% (see Appendix E, Tables E3--,E4). It

is shown in Figure 3.9 that most of the fitting error is a result of forcing an

asymmetric set of data points to fit a symmetrical formula. The noise asso- •

ciated with this type of measurement is another cause of fitting error. The

noise can be seen in the figure as an oscillation superimposed on the signal

and is believed to be a resonant ringing of the transducer which is set off by

the passage of the shock wave approximately 300 micro-sec before the vortex

arrives (see Appendix E). The asymmetry of the pressure signal is possibly

due to the changing conditions of the vortex during the time interval Z 50

micro-sec during which the signal is recorded. If this is the case, then the curve

fitting would then result in finding a pressure distribution which represents

an average condition during this time interval. In order to check the degree-

of-change of the vortex structure during this 50 micro-sec time interval, the

cubic-spline-fit interpolations of the density data from Experiments #16 and

#17 are plotted together for comparison and the RMS value of the deviation

A between the two density curves is given by (see Appendix H, Figure H.15)

A = P17() - p16(r) = 2.0%.

Suitability of Modified Cauchy Function to Represent Pressure Data

The asymptotic behavior of the modified Cauchy function given by

P(r) - AP

is found by taking the limit as r - oo, and can be written in the form

GP (r) =P,,. - r

T20
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where G is a constant given by

G = AP (Arp) 2 .

If G is defined by
G = AP(Arp)2  1 pK 2

where K is the vortex strength (defined in Chapter 1), then the pressure in

this limit becomes
1 pK 2

P(7)= Po 2 r2

which is identical to the theoretical pressure field of the incompressible invis-

cid vortex calculated in Section 1.3.1, Chapter 1. At large values of r, the
vortex density gradient vanishes and thus, the compressible vortex resembles

an incompressible vortex in this region. By this logic, the pressure distribu-

tion of the compressible vortex is expected to behave similarly to that of an
incompressible vortex in the asymptotic limit of large r, and thus, the modified

Cauchy function has been chosen as a suitable formula for representing the
radial pressure distribution. A curve fitting procedure is used (see Appendix

E) to find the values of the arbitrary constants of the formula to satisfy a

best-fit condition to the data.

Test of Pressure Data for Homentropic Relationship

The vortex is highly evacuated at the center and the pressure and density

ratios at (t s 500 micro-sec) are given by

P. P= 3.4

and
= 2.5.

p. - Ap..

It is of interest at this point to find a simple relationship between the pressure

and the density inside the vortex.

S.)..(
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Figure 3.9: Radial Pressure Distribution of Vortex (Best-Fit Curve to Deconvolved
Pressure Data).

The solid curve shown in Figure 3.10 represents the best-fit of a curve of

a different form to the same pressure data. Here, the density distribution

from Experiment #16 (shown in Figure 3.1) is used to define the power-law

relationship

P (r) = cp' ,

where -y = 1.4. This particular relationship represents the well-known ho- S

mentropic relation between p and P. A closeness-of-fit test reveals an RMS
deviation of the residuals to be 11107 N/M 2, which when normalized with

respect to the well-depth parameter AP = 107,300 N/m 2, becomes 10.4%

(see Appendix E, Tables E5---E6). The fit in this case is not as good as
the modified Cauchy function fit shown in Figure 3.9, which suggests that a

homentropic condition does not exist inside the vortex.

0
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Chapter 4

Empirical/Theoretical Analysis

4.1 Analytical Procedures

4.1.1 The Empirical Models

The empirical results from Chapter 3 are utilized, along with the Thermal

Equation of State, the Continuity Equation and the equations of motion, to
calculate other physical properties of the vortex. The empirical information,

as described in Chapter 3, is available in several forms which are summarized

below:

9 Raw Dewity Data: A sequence of 14 independent intantaneo,. radial

density profiles of vortex at ; 50 micro-sec intervals. Each of these

profiles are made up of ;, 35 data points representing discrete values
of density at different locations along the diameter of the vortex which

correspond to the interferogram fringe locations. This is the raw form of

the density measurements which are obtained by the evaluation of the

interferograms.

63
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9 Raw Pressure Data: A single independent radial pressure profile of the

vortex. This profile contains 85 data points sampled at equally spaced

time intervals from the pressure-time response signal. The measured

velocity of the vortex center allows the transformation of the data into

a radial pressure profile of the vortex corresponding to a vortex age of

, 500 micro-sec. These 85 discrete values of pressure, equally spaced

across the diameter of the vortex (at t - 500 micro-sec), constitute the

raw form of the pressure data (see Appendix E).

e Time-Independent Empirical Density Models: 14 best-fit curves to the 14

independent raw density data sets as described above. This provides a

compact mathematical expression to represent each radial density profile

of the vortex at the discrete intervals of time defined by the vortex age

in each interferogram (- 50 micro-sec apart).

e Time-Dependent Empirical Density Model: A single mathematical ex-

pression which represents the continuous time and radial dependence

of the vortex density. This is a best-surface fit to the complete time-

dependent density data set provided by the interferogramns.

* Time-Independent Empirical Pressure Model: A single best-fit curve to

the pressure data after it has been corrected by the deconvolution process.

This provides a compact mathematical expression to represent the radial

pressure profile of the vortex at t ;. 500 micro-sec.

4.1.2 The Calculations

Additional physical properties of the vortex can be investigated in a straight-

forward manner by use of the information described above in the governing

equations. The distribution of the temperature and of both components of

the internal velocities inside the vortex is first calculated. Knowledge of both

the radial and circumferential components of velocity inside the vortex, along

with the density information, allows magnitude calculations of the terms of

,9
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the equations of motion (Equations 1.2 and 1.3) to be performed. The investi-

gation of the relative importance of diffusive and convective terms under these

flow conditions leads to more general conclusions about the effects of viscosity

and compressibility on the vortex internal physical structure and behavior.

The following procedures are used for the calculations:

9 The single pressure profile that has been measured corresponds to a vor-

tex of a specific age (t ,t 500 micro-sec) and this information along with

the corresponding density profile (Experiment #16) is used to calculate A
0. 11

additional properties of the vortex for this particular time. The pressure ".

and density data at t ;, 500 micro-sec is used in both the raw discrete "I

form and the analytical form as described above to calculate the follow-

ing:

(a) The radial temperature profile T (r) for t ;% 500 micro-sec is calcu-

lated with the aid of the Thermal Equation of State

P(r)= p(r)RT(r) (4.1)

(b) The radial distribution of circumferential velocities v, (r) for t ; 500

micro-sec is calculated with the aid of the modified form of the Radial

Momentum Equation

1 (r) r v (4.2)

in which the unsteady term, the radial convective acceleration term ..

and the normal stress term have been neglected (see Section 4.2.4).

By use of both forms of the data, the results of the above calculations

are then compared to check the validity of the empirical models.

e The time-dependent empirical density model is used alone to calculate

the time-dependent radial distribution of the radial velocities v, (r, t)
with the aid of the Continuity Equation

8p(r,t) 1 a 7
+ - (rpv, (r, t)) = 0, (4.3)

r Yrp

I Loi
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where the center of the vortex is considered an inertial frame of refer-

ence. A solution for v, (r, t) is in turn found with the aid of MACSYMA,

a symbolic computer program which solves differential equations (see

Appendix G).

4.2 Analytical Results

4.2.1 Calculation of T (r)

Raw Data Calculation of T (r)

From the results for the pressure and the density at a point, Equation 4.1
allows the calculation of a corresponding temperature. The pressure informa-

tion used in this initial calculation of temperature is shown in Figure 4.1.
The figure shows a solid line, the latter is a spline-fit to the sampled data

points taken from the original time response of the pressure gauge, in order
to interpolate pressure values at the same radial distances corresponding to

those of the density data shown in Figure 4.2. This density data and the

corresponding interpolated pressure data (just described) is tabulated in Ap- . .

pendix K, Tables K.1 and K.2. These data represent the pressure and density

profiles of the vortex at t 500 micro-sec. In order to test for an isothermal

(linear) relationship between the density and the pressure inside the vortex,

it is necessary to find a scale factor which allows the two data sets (p (r) and p.

P(r)) to collapse into a single curve. A beat-fit evaluation of a scale factor cl >

is summarized in Appendix K (Table K.1), and gives the RMS value of the

residuals

RMS [P - cip] = 7582 N/rn2 ,S

which characterizes the degree of overlap between the values of the pressure 1

and the rescaled density. When normalized with respect to the well-depth AP

b
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Figure 4.1: Spline-Fit to Raw Pressure Data (t ; 500 micro-sec).
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Figure 4.2: Density Data from Interferogram #16 (t 500 micro-sec).
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Figure 4.3: Rescaled Density Data Superimposed on Pressure Plot.

(see Figure 3.9, Chapter 3), the RMS deviation becomes 7.1%. The scale fac- i
tor cl permits the density data to be superimposed on the same pressure plot

as shown in Figure 4.3. Note that if these data overlapped completely, then

the vortex would be isothermal, in accordance with the Thermal Equation of *

State.

The calculation of the temperature is represented by the discrete values plot-

ted in Figure 4.4 at locations corresponding to those of the density measure-

Calculation of T(r) Using Time-Independent Empirical Models

The empirical models used for the calculation of a continuous temperature ,

55

distribution are shown in Figures 4.5 and 4.6. The values of the three free
parameters that constitute a best-fit condition to the data in each case are ,:"

given in Figures 3.1 and 3.9 in Chapter 3. Again, Equation 4.1 is used

r~cm)

to lrlate ed e potm , bt in thcae thhe lt he a ma m atinao

State.
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Figure 4.4: Vortex Radial Temperature Calculated From p and P (t z 500 mi-
cro-sec).
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Figure 4.5: Vortex Density Empirical Model p (r) (t - 500 micro-sec).

expression instead of the discrete numerical values obtained in the previous

calculation. The results of this calculation are given in Figure 4.7.

Comparison and Discussion of Temperature Results

The results from the two previous calculations of temperature are superim-

posed on the same plot in Figure 4.8 for the purpose of comparison. The calcu-

lation using the symmetrized curve fit models results in an axially-symmetric

temperature distribution, whereas, in the raw-data calculation, the asymme-

try of the original density and pressure data shows up in the calculation of

temperature. As can be seen in Figure 4.8, the results of both calculations L

reveal the same characteristic temperature peak at r ; 1.5 mm. Also both

calculations show a sharp temperature drop at the center of the vortex (r = 0).

Note how the asymmetry in the temperature points appears to be magnified

relative to the original density and pressure asymmetries. This is an effect of

combining the asymmetrical components of both the density and pressure in

,' : ' , . ' , ° , " : ' " '  " , " u " " . .. , . .. , . . . . ' . " " . , " ' - " " " . .. . w ' ' . .. : . .. .. . " , " .. . " , - . ' . . " . , , .. ' -. -1
dV ~V%.,.%~.'..........-. *.5 a-..-!
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Figure 4.6: Vortex Pressure Empirical Model P (r) (t ;: 500 inicro-sec).
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Figure 4.8: Comparison of Vortex Temperature Results T (r).

the calculation of temperature.

4.2.2 Calculation of vo (r)

Raw Data Calculation of vo (r)

The calculation of vO (r) using Equation 4.2 in the form

S(r)=r 1 OP (r) (4.4)

obviously requires numerical values for the pressure gradient OP (r) /or. By

use of the discrete values of pressure data in the form that are equally spaced

in r (see Appendix K, Table K.2), a numerical finite difference operation yields

suitable approximations of 8P (r) /,r. This was done by calculating the first-

difference values AA, = Pi+, - A and then dividing by the spatial interval

Ar which is the same for all the points. The results of this approximation are

" i' ' -
" iL I * -" klil,,

=
: i ', il h/ 'Ik I
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Figure 4.9: Approximation of Vortex Radial Pressure Gradient 8P (r) /,r.

given in Appendix K, Table K.2 and are plotted in Figure 4.9. The solid line in

Figure 4.9 is a spline-fit curve to the calculated values which are also equally

spaced points (note: points not shown in figure). As in the temperature

calculation, this spline-fit to the equally spaced points permits interpolated 6

* values of the function to be found which correspond to the discrete density

data points (which are not equally spaced). In this way, the r-coordinates

of the data-pairs: density and pressure gradient, correspond to the radial

positions of the fringes of Interferogram #16 and the calculation of v (r) at -

these same points can be performed using Equation 4.4. The results of this

calculation are given in Appendix K, Table K.2; and in Figure 4.10.

Calculation of vo (r) Using Time-Independent Empirical Models

Figure 4.11 shows the results of the calculation of v# (r) by substitution of the

time-independent empirical models of density and pressure as given in Figures

4.5 and 4.6 into Equation 4.4. This calculation reveals a maximum velocity

i 
-0

U * - R * V- -
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Figure 4.10: Vortex Circumferential Velocity Distribution vO (r) As Calculated From
Raw Data.

teoma= = 229 m/sec at a radius of .93 mm. Note, that vo is with respect to

the vortex center. The velocity increases almost linearly from zero (at r=O)
to this maximum value; a behavior which closely resembles that of rigid body

rotation. This region of the vortex is defined as the core and has an associated

core radius given by rve = .93 mm. In Figure 4.12, the results are given of

a calculation of the curl of the circumferential velocity, which is defined as the
vorticity. This vorticity distribution rapidly drops to zero outside the core of

the vortex which shows the irrotational character of the vortex in this outer

region.

Calculation of v (r) Using Incompressible Model

At this point it is instructive to attempt to fit the curve of Lamb's incompress-
ible viscous model of a vortex to the present compressible results as given in

..

"S
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Figure 4.11: Vortex Circumferential Velocity Distribution v# (r) As Calculated From
The Time-Independent Empirical Models.
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Figure 4.13: Radial Distribution of Vortex Strength k (r) at t=500 micro-sec.

Figures 4.10 and 4.11. Lamb's model (see Section 1.3.1) is given by

V# (r, t) _kr(1 -,e - -r ) ,(45-

where k (the vortex strength) and v (the kinematic viscosity) are considered

constant parameters. In this case, both the vortex strength and the kinematic -.

viscosity are functions of t and r, and must be redefined as follows:

k(r,t)=rv(r,t) (4.6)

v (r,t) = I, t) (4.7)

The time t for Equations 4.6 and 4.7 is fixed at t=500 micro-sec using the

values of vj(r,t=500ps) and p(r,t=OOps) as given in Figures 4.6 and

4.11. Figures 4.13 and 4.14 show the results of .e calculations giving the

distributions of vortex strength and kinematic viscosity of the vortex at t=500

micro-sec. Each of the plots in Figures 4.13 and 4.14 are characterized by
the values of the functions at r =0 and r = o given by ko, k,,,, v0, and

" |
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Figure 4.14: Radial Distribution of Kinematic Viscosity v (r) at t=500 micro-sec.

zi,,. Near the center of the vortex, the density gradient is large; and thus,

compressibility effects are present in this region. Far from the center of the
vortex, the effects of compressibility are negligible; and so the values picked .r ".

to be used for the constants k and v in Equation 4.5 are k,, and v,,. This ,,

leaves only one free parameter t in Equation 4.5 which must be determined

for the best match to the results in Figure 4.11, i.e., a value of t is to be

determined in order to match the maximum velocity of the calculated Lamb-'

model curve with that of the empirically derived curve in Figure 4.11I. The ,,

solution of Equation 4.5 for t, given the values :-'-'

1-4 7-45 ;'

and '
v-. = 1.00 x 1.0 1.5

IP

yies the vleetofcmrsiiiyaengiil;adsthvluspkd

to b usd fr thcosta t k anOvinEqto n . rek n v.Ti
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Figure 4.15: v6 (r): Comparison of Raw Data Calculation, Empirical Model Calcu-
lation and Lamb Model Fit at t=500 micro-sec.

Comparison and Discussion of Circumferential Velocity Results

Figure 4.15 shows the superposition of the results of the three different cir-

cumferential velocity calculations as just described in the previous sections.

The initial condition of the Lamb vortex is defined by a concentration of the

vorticity along the line of the axis, whereas the initial distribution of vortic- -

ity of the experimental compressible vortex is determined by the generation

process. This difference in initial conditions accounts for the large value of t

required in the Lamb model to match the experimental data. The relaxation

time t required for the Lamb vortex to decay by diffusion from an irrotational

line vortex to one with a viscous core matching that of the experimental condi- .,.

tions, is found to be approximately 30,000 micro-sec. It can be seen in Figure

4.15 that the incompressible Lamb model very closely fits the conditions of e.,

the vortex outside the core region (for r > 5 mn), which is where the effects

of compressibility, as determined by inspection of the density function (see

P-

N l
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Figure 4.5), are very small. Except for the small component of asymmetry

and the scatter (associated with the noise of the pressure signal), there is good

overlap of the results of the raw data calculation with the other models.

4.2.3 Calculation of v, (r, t)

The Normalized Continuity Equation JO

It is convienient to write the Continuity Equation (Equation 4.3) in the

following normalized form:

- [ + v. (lnp) + i+ [ (lnp)] =0 . (4.8)

This is the form of a first order linear differential equation and can be solved

for v, (r, t) when the function p" (r, t) is known.

The Normalized Empirical Density Formula

From Section 3.1, the normalized density function which describes the radial 'r.N, ,

and time dependence of the normalized vortex density distribution is given by

p*(r,t)=1- (49)+

where the constants are defined by +

= .898

Aro = .143 cm

T = 1325 ps

e = 57.2 cm/s .

This density function is substituted into Equation 4.8, and then a solution

of this equation yields the time-dependent radial distribution of the radial _

component of velocity v, (r, t).

A.
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Figure 4.16: Vortex Radial Velocity Profiles v, (r, t) at Stations #10, #14 and #18 -

(At ; 200 micro-sec intervals).

Calculation of v7 (r,t): Solution of the Continuity Equation Using

MACSYMA

A solution of Equation 4.8 is found using MACSYMA, a computer program e

which is capable of finding symbolic solutions of certain forms of ordinary

differential equations (see Appendix G). A sample of the results of the MAC- r- -

SYMA calculation is given in Figure 4.16, which shows the functional form

of the solution v, (r, t) and also shows three curves generated by this function - "

at specific values of t. In the function shown in Figure 4.16, the dependence

on r is shown explicitly and the dependence on t is implicitly given in the six r..

functions f, (t). The values for the constants c, and c2 are found from the "

boundary conditions (see Appendix G). The curves in Figure 4.16 show the

radial dependence of v, for the three different cases: t=197, t=401 and t=598

micro-sec (which correspond to Density Experiments #10, #14 and #18). ,.

N,9
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Discussion of Radial Velocity Results

The three curves in Figure 4.16 represent the radial velocities of the vor-

tex at three different times and correspond to the experimental conditions of

Density Experiments #10, #14 and #18 (see density curves in Figure 3.6,

Chapter 3). The curves in Figure 4.16 were generated using the information

in Tables L.1--L.6, Appendix L. The negative value of v, indicates that the

direction of this component of velocity is inward, towards the center. Figure

3.6 in Chapter 3 shows the time dependence of the vortex density which is

increasing with time. Associated with this increase of the vortex density, is

an inward convection of fluid. The rate of this convection is dependent on the

magnitude of v,, which is observed to be decreasing with time in Figure 4.16.

This information on the time behavior of v, is used in the following section to

approximate the magnitude of the unsteady term of the Radial Momentum

Equation. Figure 4.17 shows the plot of the vortex radial velocity distribution

calculated for t=500 micro-sec (corresponding to Density Experiment #16).

The values used to generate the curve in Figure 4.17 are tabulated in Ap-

pendix L (see Tables L.7---L.12). This information on the radial dependence

of v, is used in the following section to approximate the magnitudes of both

the convection term and the viscous (normal stress' ;erm of the Radial Mo-.5
mentum Equation. Also, this information is used to evaluate the convection

term of the Angular Momentum Equation.

4.2.4 Evaluation of Navier-Stokes Terms

By use of the quantities calculated in the previous sections of this chapter, it is

now possible to evaluate the terms of the Radial Momentum Equation and the

Angular Momentum Equation as given by the theory of the 2-D axisymmetric

compressible free vortex in Section 1.2.1 (Chapter 1).
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Figure 4.17: Vortex Radial Velocity Profie v, (r) at t=500 micro-sec.

The Radial Momentum Equation

The Radial Momentum Equation (see Equation 1.2) given by

o~,(,t + t0'r(r, t)

1 9P (r, t) _[vo (r, t)]2

+ 7(., t r r)

P (r, t)

p (r, t)

V ~ ~ ~ ~ V (r - t) ~'
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The first unsteady term in Equation 4.10, namely

Ov, (r, t)

is neglected in the calculation of v# (r) at t=500 micro-sec (see Section 4.2.2).

It is of interest to evaluate the magnitude of the unsteady term in the region

of the vortex where the peak velocity vs occurs (core radius). The calculation

of vj in Section 4.2.2 (see Figure 4.11) gives a value of r=.093 cm for the core

radius of the vortex. The magnitude of this term at t=500 micro-sec can be

approximated using the information in Appendix L, Table L.4, which gives the

values of v, at r=.095 cm for both t=401 and t=598 micro-sec (see also Figure

4.16). The difference in time t is At = 197 micro-sec and the corresponding

difference in v, is Av, = -. 07 m/sec . A finite difference approximation of

this term is given by A

At= -359 r/sec

The second term in Equation 4.10
v, (r,. (r, t)
V,-(r, t) &

is a convection term which is also neglected in the calculation of v# (r) at

ift=500 micro-sec. The magnitude of this term can be approximated using the

information in Appendix L, Table L.10, which gives the values of v, at t=500

micro-sec for r=.085 cm, r=.095 cm and r=.105 cm (see also Figure 4.17). A

finite difference approximation of this convection term is then given by
.09V (r = .105) - v,. (r = 085) 1 3 2

V,( = Ar

The third and fourth terms in Equation 4.10 are used in the calculation of

v# (r) (Section 4.2.2). The magnitudes of these terms at r=.093 cm can be

approximated using the information in Appendix K, Table K.2. Within this

table, are the values of p, 8P/Or and v# at r=.096 cm, which are the results of

the raw data calculations described in Section 4.2. Evaluation of these terms

give
•1 8P (r, t) = x 107 r/SeC2

P (, t) -44×1
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and
[v (r, t)1 = 4.52 x 10T r/. 9ec2 .

The last term in Equation 4.10

2 ( A Ov, (r, t) + , (r, t) v, (r,t)\
A(t) k or or Or ,

is a normal stress term, which is neglected in the calculation of vo. The

magnitude of this term can be approximated by a finite difference method

using the same three values of v, that were employed for the evaluation of the

second term above. The density p is known (see the evaluation of the third

term above) and the kinematic viscosity p is given by

pA = 1.8 x 10 - 5 m 2/sec.

From these considerations, a magnitude approximation of the normal stress 69

term yields a value of .411 m/sec2.

The above calculations allow comparisons to be made of the relative magni-

tudes of the terms of the Radial Momentum Equation. One can see from this

comparison, that the terms which are neglected in the calculation of v# in

Section 4.2.2, are indeed of little significance in this case.

1.(

The Angular Momentum Equation

The Angular Momentum Equation (see Equation 1.3) given by

p(r,t)r 2 vo(r,t) + (r,t)v,(r,t) (rv.(r, t))
r

7-3; v.J r = 0  (4.11)

is written in terms of the three dependent variables:

p (r, t)
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v(r,t)

v,(r,t)

The first term in this equation

p(r,t)r rt)

is an unsteady term and is in units of angular momentum per unit volume

per unit time (or torque per unit volume).

The second term
+p (r, t) v, (r, t) -r#(r )

is a compressible (convection) term (note that v, would be zero in an incom-

pressible fluid). This term represents the convection of angular momentum.

The third term
18 [a 1 3 V(r, t)]

5Ti Lr a r
is a viscous (diffusion) term which represents the diffusion of angular momen-

tum.

By setting t=500 micro-sec, one can evaluate the last two terms of Equation 0

4.11 using the calculated distributions of vO (r, t = 500 ps) and v, (r, t = 500 ps)

from the previous sections; and using the density distribution p (r, t = 500 ps)

from Experiment #16. These three quantities, plotted in Figures 4.5, 4.11

and 4.17, are replotted for positive values of r in Figures 4.18, 4.19 and 4.20. 0

This information is substituted into the second and third terms of Equation
4.11 and numerical evaluations of these terms are made. After the evaluation

of the second and third terms, the first term of Equation 4.11 can then be

obtained by the condition that the sum of all three terms must be zero for all

values of r. The results of these calculations are shown in Figure 4.21.

The peak values of the three curves in Figure 4.21 occur at r ; 0.8 mm. The

peak value of the viscous term is 10.4 kg/m - sec2 and the peak value of the 0

compressible term is -75.9 kg/m - sec2 . The peak value of the unsteady term
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is found to be 65.5 kg/rn - sec2 which satisfies the condition that the sum of

all three terms is zero at any point r. The positive value of the viscous term

represents the outward viscous diffusion of angular momentum. The negative

value of the compressible term represents the inward convection of angular

momentum. The positive value of the unsteady term represents a net increase

with time of angular momentum per unit volume. The curves in Figure 4.21

reveal the relative magnitudes of the competing effects of outward diffusion

and inward convection of angular momentum inside the vortex. Thus, it is

revealed in Figure 4.21 that the compressibility of the fluid in this case has a

much larger influence than the viscosity on the behavior of the vortex, with

the principle feature being a net increase with time of angular momentum per

unit volume within the vortex. This growth of angular momentum density

with time in the vortex is a primary result of the inward radial convection of

fluid v,, which in turn is only possible in a compressible fluid.

The vortex is in a stage of high compressibility during the first 1325 micro-sec

of the vortex lifetime, during which the density variation decreases from its

initial value of 9.8 down to a value of 1.5 (see Section 3.1, Chapter 3). Beyond

this time, the corresponding inward radial convection of fluid v, continues to

decrease in magnitude as the density variation across the vortex vanishes (see

Figure 4.16). A transition point would then be expected at a time t when

the compressible term is equal in magnitude to the viscous term, resulting

in the unsteady'term becoming identically zero. After this transition, the

viscous diffusion of angular momentum would then be expected to become
the primary process. In this case, the viscous term would then become larger

in magnitude than the compressible term and the unsteady term would as a

result become negative in sign, which represents a net decrease with time of

angular momentum per unit volume.
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Summary of Observations

The initial state of the vortex is a result of the generating process. A free

vortex is created that is initially highly evacuated and which is in a state of

non-equilibrium. The vortex begins to collapse as fluid rushes towards its

center. The angular momentum associated with the surrounding fluid is also

moved further into the vortex during this collapsing process, which is purely a

compressible effect. As a result, the vortex is in a period of compression, and O

is gaining in both mass density and angular momentum density, with time.

The rate of growth of the mass density and the angular momentum density

inside the vortex is dependent on the magnitude of v,, which is decreasing

with time as the density variation across the vortex vanishes. Eventually,

the viscous effects would become larger in magnitude than the compressible

effects as v,. approaches zero, and the vortex would begin to resemble that

of a viscous incompressible vortex (see Section 4.2.2). At this point, there

would be a transition in the behavior of the vortex as it transforms from a

highly compressible vortex (in which the angular momentum density grows

with time), to a diffusive vortex (in which the angular momentum density

decays with time).

o

SI
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Figure 4.18: Radial Distribution of Vortex Density at t=500 micro-sec.
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Figure 4.19: Radial Distribution of Vortex Circumferential Velocity at t=500 mi-
cro-sec.
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Chapter 5

Overall Assessment and

Conclusions

As stated in Chapter 1 (Introduction), the objective of this thesis is the mea-

surement and calculation of the various physical properties associated with

a traveling compressible vortex, which is generated and convected by shock

passage over an airfoil model. The results obtained led to certain observations

of the structure and behavior of the vortex, some of which may possibly apply

more generally to the description of compressible vortices.

The experimental and analytical results led to several observations of the

physical structure and behavior of the vortex as follows:

(a) The measured radial density distribution of the vortex very closely fit

a simple mathematical formula, which was a modified form of the well-

known Cauchy function. Two parameters with opposing characteristics ,

defined the shape of this density function; namely the well-depth Ap and

half-width Ar.

(b) The magnitude of the well-depth parameter of the density function was

observed to decay exponentially with respect to vortex age.

91I



92 CHAPTER 5. OVERALL ASSESSMENT AND CONCLUSIONS

(c) A vortex density radius, defined by the half-width parameter of the den-

sity function, was found to be - 1.7 mm.

(d) A similarly defined vortex pressure radius was found to be - 1.2 mm.

(e) A comparison of the conditions at the center of the vortex and at its

outer boundary, showed a change in pressure by a factor of 3.4 and a

change in density by a factor of 2.5.

(f) The pressures and densities inside the vortex were not found to exhibit

a homentropic relationship.

(g) The radial distribution of the circumferential components of the velocities

inside the vortex indicated a peak value of v# ;, 230 m/sec at r ; .9 mm,

which also defined the radius of the vortex core.

(h) The radial distribution of temperature showed a sharp drop in value at

the vortex center and a peak value occurred near rc., . ,.
S

(i) The radial distribution of the radial components of the velocities inside

the vortex reached a peak value of m .3 m/sec near rc,,; and thus,

the magnitude of the radial component of velocity was m, .1% of the

magnitude of the circumferential component.

(j) During the particular stage of the vortex in this study, the effect of com-

pressibility of the fluid on the transport of angular momentum inside the ,

vortex was found to be approximately an order of magnitude larger than

the effects due to the viscosity of the fluid. In general, the primary effect * |

of compressibility inside the vortex was an inward convection and subse- K>

quent compression of the rotating fluid. Since the transport of angular

momentum out of the vortex by the process of diffusion was counteracted_ -"

by the stronger process of inward convection, then the net effect of these

two processes was an increase (with time) of angular momentum density

inside the vortex.

The results of the experiments and subsequent analysis provided a physi-

cal characterization of the vortex under study in terms of its basic physical
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properties and revealed a complex time-dependent internal structure, which

is governed by the initial conditions and the competing effects of both com-

pressibility (a convective process) and viscosity (a diffusive process). SomeF

insight into the question of the role and relative magnitude of these effects on

the internal structure and behavior of the vortex has been provided by this

study and the effect of compressibility is found to be the dominant process

of angular momentum transport inside the vortex. A question immediately

arises pertaining to the generalization of this observation; namely: Does this 0

behavior reflect the nature of compressible vortices in general? Also, the role

of compressibility and viscosity on the transport of energy inside the vortex
is still an open question. Lastly, the remarkable closeness-of-fit of a simple
mathematical formula to the density data raises the question of the generality

and physical significance of this empirical law. .

Many new questions have been raised as a result of the observations in this

study. In this vain, suggestions for extending this study in directions that

may shed light on some of these questions are given in the following remarks.

Transport of Angular Momentum Inside Vortex

The primary conclusions of this study were based on the calculated relative

magnitudes of the convective and diffusive terms of the Angular Momentum

Equation, which showed that the effect of compressibility is the dominant
process of angular momentum transport inside the vortex. As a suggestion

for further research, the generality of this result may be tested by repeating

the experiments of this study under d:fferent flow conditions.

Vortex Energetics

The role of compressibility and viscosity on the structure and behavior of the
vortex is still not fully understood. What is missing from this analysis, is a full

description of the energetics inside the vortex. As an extension of this study,

0IND
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an analysis of the terms of the Energy Equation may be performed, which

would require information about the time-dependence of v6. This information

can be gained by repeating the pressure experiments; using multiple pressure

transducers at different locations along the vortex path.

Empirical Density Law of Compressible Vortices

The method of representation of data by equations used in this study was

primarily motivated by the convenience of using empirical information in this

form in the governing equations for the calculation of other properties. An-

other benefit of finding a simple mathematical formula to accurately represent

data, is the possibility that an exceptionally good fit, such as that found in

these density experiments, may be an indication that the function itself has

some physical significance; in this case to compressible vortices in general.

The generality of this function may be investigated in an extension of this

study (using the same shock tube apparatus and diagnostics) by repeating

the density experiments under varied flow conditions.

Computer Simulations

As a final suggestion for further research; solutions of the governing equations e

found by computational methods may also help provide more insight into

the questions discussed above.

I
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Appendix A

The Shock Tube

Begining with a brief treatment of shock tube theory (see Thompson [6] for

a complete description of the theory), the actual experimental flow condi-

tions both in the shock tube and in the test section are described including a

boundary layer calculation.

0

A.1 Shock Tube Theory

A shock wave is a thin region of rapid state variation across which there is a 5
flow of matter. Physically, shocks have a measurable thickness of the order of

10-"m. Where a characteristic length becomes comparable to intermolecular

dimensions, the continuum fluid models break down. This allows the treat- ?

ment of a shock wave as an idealized surface of discontinuity in space. In

general all fluid properties - pressure, velocity, density, etc. - are considered

discontinuous across the shock surface. The flow of matter across the shock

front must satisfy the inviscid gasdynamic conditions of balance for mass,

momentum, and energy in the form of jump conditions (Thompson [6]) which

95
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can be written in the following form:

PIUI -P2U2

pllp + P2 = U2T + p2

2 27

where the subscripts 1 and 2 denote the properties of the fluid on opposite

sides of the shock and the velocities u are relative to the shock.

In a shock tube, a traveling shock is generated at one end by a ruptured di-

aphram which initially separates the ambient gas in the tube from a higher

pressure driver gas. The initial state of the gas in the test section and the

tube is measured before the diaphram ruptures. The parameters P and T

are most easily measured and completely define the initial state, which in

this case corresponds to atmospheric conditions in the lab. After the shock

is generated, its laboratory frame velocity ull or Mach number M 11 through

the gas is measured by a time-of-flight method using two laser beams and

detectors (see Appendix D). In this particular application of the shock tube,

it is the flow behind the shock that is of interest. It is then convenient to

write jump conditions relating the properties of this flow to the initial exper-

imentally measured quantities P1 , T, and M11. The most useful relations are

summarized below: P1

ci = (yRT)

11 Ul

Cl

2M,1 -(- 1

T[(-- 1) M12 + 2][2-yM2 1  (7- 1)(
( + 1), M2,1

P2 ( + 1) M2±

f M
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2c,+- - i M 1 1-

C2 = C .(
M21 = !21 2 (M121- 1)

"C- [2yM~1 - (y- 1)]i [( - 1)M 1 + 2]J

el = P u_._.L - p L 2c, (M + M 1)
P P2 (-y - 1) M21+ 2

These relations illustrate the shock tube's capability for independent variation

of the Mach number M21 and the Reynolds number Re2l of the flow behind

the shock. This useful, uniform, well-characterized flow behind the shock is

eventually interrupted by the contact surface which separates the fluid parti-

cles of the test gas and driver gas and which travels behind the shock at the

flow velocity U21. The useful flow time At in a test section that is a distance

d from the diaphram (the initial position of the contact surface) is given by

A calculation of At for the shock tube described in Section 2.1.1 where d = 6

m and M11 = 2 gives a value of 5.25 milli-sec.

The Mach number of the shock M11 is determined by the initial pressure ratio

P4/P 1 at the diaphram between the test gas and the higher pressure driver

gas and is given implicitly by the relation [6]

P4 _ 2"1M, - Of, - 1) [ - 1 C -

P= " 1  --ti + I c4  M i I
where the parameters of the test gas and driver gas are denoted by the sub-

scripts 1 and 4 respectively. The appropriate pressure ratio must be attained

at the instant of diaphram rupture in order to generate the required shock
for a particular application. This is done in practice by preparing a diaphram 'H
according to empirically determined prescriptions of material type, thickness,

hardness and depti, of scribed grooves for weakening. For these experiments,
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a Mach 2 shock wave is produced at atmospheric conditions by using a .040

inch thick aluminium diaphram (type 6061-T6) with z: .010 inch deep grooves

machined into the surface in an X pattern. The driver section is pressurized

to - 600 psi at which point the diaphram ruptures. The ratio P4/P, in this

case is ;, 40 and a Mach 2 shock is produced. For comparison, the theory

predicts the generation of a Mach 2 shock given an initial pressure ratio of

P4/P , %: 34.

A.2 Experimental Conditions

A.2.1 Shock Tube Flow

The shock tube is run with the driven section open to the laboratory at-

mosphere which is maintained at an average temperature of 293 ± 2 (±0.7%)

degrees Kelvin. The atmospheric pressure varies from day to day in the labora-

tory and has an average value given by P, = 760±10 (±1.3%)mm Hg (or equiv-

alently 14.7 + .2 psi). Further calculations reveal the average speed of sound

given by c, = 343.3*1 m/sec and the density given by p = 1.205±.025 kg/m.

The shock is started when the diaphram is ruptured during pressurization of

the driver section. The pressure P4, at which the diaphram ruptures, can be

controlled by the depth of the two crossed grooves which are machined into

the surface of the diaphram. In these experiments, the value of P4 ranged from

585 -4 615 psi (see Table C.2 in Appendix C). This breaking pressure varied

by ±2.5 % from an average value of about 600 psi. The speed of the shock is

measured at about 5 m downstream from the diaphram using the apparatus

described in Section 2.1.3 (Chapter 2). The average value of the shock Mach ,-

number for Experiments #1 - #21, is 1.995 ±.006 (see Appendix C) and

varies by ±0.3%.

I
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A.2.2 Test Section Flow

The Mach number of the shock decreases with distance from the end of the

shock tube as the shock expands in a cyllindrical fashion inside the test section.

The pressure signals (see Figures E.2 through E.5 in Appendix E) reveal a

pressure gradient in the flow resulting from this expansion. A corresponding

density gradient also exists in the flow as seen in the interferograms (Appendix

C). Both the shock and vortex convection speeds are measured by a time-

of-flight measurement (see Appendix D). The Mach number of the shock is

plotted as a function of the distance x from the entrance of the test section

in Figure D.6 (Appendix D) and ranges in value from '2 to 1.36 as the shock

expands. The vortex convection velocity is found to range in value from 179

to 189 m/sec under a wide range of shock tube conditions (see Table D.3 in

Appendix D).

A.2.3 Boundary Layer Calculation

The thickness 6 of the boundary layer behind the shock can be estimated by

the relation [6]

where v is the kinematic viscosity (1.8 x I0-' kg/m-sec) and t is the time after

shock passage. From the pressure response of the flow shown in Figure E.2

(Appendix E), the vortex is seen to arrive at the pressure transducer about S

t=300 micro-sec behind the shock. From these considerations, an estimated

value for 6 at the vortex location is about 50 microns, which is small compared

to the inside dimensions of the shock tube (5 cm). From these considerations, N

it is not expected that the boundary layer would have an appreciable effect

on the optical or pressure measurements of the vortex.

S
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Appendix B

The Ruby Laser

The method of Double Exposure Holographic Interferometry (as described

in Appendix C) requires a coherent light source to provide suitable object

and reference beams for the technique. In the present application, the flow is S

changing rapidly and so the exposures must be made on a time scale that is

very short, compared to the time scales characteristic of the flow, to prevent a

time-averaging effect. A ruby laser is chosen as the light source for the exper-

iments, mainly because of its good coherence properties and because of the

short time duration of the pulses. This type of laser has a fairly large output

energy and its wavelength is fairly well matched to the photographic materials

available for holography. A brief description of the design and operation of

this device is presented. (See Hariharan [32] for a complete treatment on the

design of the ruby laser for holographic applications.)

B.1 Laser Design and Operation

A laser, in general, consists of an active medium for amplification of a certain

wavelength of light and an optical cavity to provide feedback of the amplified

light back into the medium. When the optical gain of the medium given by

101
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the gain coefficient A becomes larger thmn the optical losses of the mirrors,

then laser oscillation occurs. The small-signal power gain of the ruby is given

by

G = eA(P)L

where L is the length of the ruby rod (10 cm) and where A (v) is the gain per

unit length of the ruby after a population inversion is created by means of

optical pumping with a flashlamp. The condition for laser oscillation is given

by the relation pow e 2->

RReA(A)L > 1,

where R, and R2 are the power reflection coefficients of the two mirrors which

make up the optical cavity. In this particular design the first mirror is 99.7%

reflective at 6943A and the second mirror is an Ekalon (commercial name)

resonant reflector consisting of 2 flat sapphire plates which together are about

60% reflective in a very narrow optical bandwidth. The beam is provided by
the coherent light that escapes the cavity through the partially transmissive

Ekalon during the oscillation. The distance D between the mirrors is 1 m.

The longitudinal modes of this cavity have a frequency spacing given by the

Free Spectral Range (FSR) which is related to the distance D by the relation

FSR = -L = 150 MHZ .

2D

The coherence length A of the laser was found to be about 10 cm by changing

the optical path length of the reference beam and monitoring the quality of the

resultant holograms. The combination of the spectral selectivity of the Ekalon

along with the practice of operating the laser close to oscillation threshold

insures that the laser oscillates in only one mode and thereby produces a

beam with sufficient coherence for holography. The laser also has a Pockels

cell type Q-switch in the cavity which is a fast-acting optical shutter. The

Pockels cell consists of a polarizer and a field-induced Birefringent crystal
which is placed so that its principle axis is 45 degrees with respect to the . ,

direction of polarization of the beam. When a voltage is applied to the crystal,

a phase shift of ir/2 is produced between the transmitted components, thereby

- V ~ ~"V * .
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rotating the polarization of the beam 45 degrees. After reflection from the

end mirror, the return pass through the crystal results in total rotation of

polarization by 90 degrees to that of the polarizer thereby blocking the beam

from passing. When the voltage is quickly removed the Pockels cell allows

the beam to pass. The Q-switch is necessary for allowing the energy in the

ruby to be stored during flashlamp pumping. After the flashlamp has been

on for abcut 1000 micro-sec, then the optical gain of the ruby reaches a peak

value. It is at this time when the Q-switch opens and laser oscillation occurs

producing a 10 nano-sec pulse of coherent light. Figure B.1 shows the time

plots of the flashlamp current I and the corresponding laser gain coefficient

A. The dashed line shows the immediate drop in A when the Q-switch opens

at t=1000 micro-sec.

S.

K
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Figure B.1: Time Behavior of Flashlamp Current and Gain of Flashlamp Pumped
Ruby.
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Appendix C

Density Measurements .0

(Holography)

In standard Double Exposure Holographic Interferometry, interference be-

tween the wavefronts reconstructed by two holograms of the same fluid flow

region takes place. The two holograms are recorded on the same photographic

plate in two steps. Typically, the first exposure is made of the fluid at rest and

the second is made during the flow conditions. The resultant interferogram "

allows the flow to be visualized and analyzed. Holographic interferometry is

the primary diagnostic used in this study. A brief treatment of the theory

is given, followed by a complete description of the experimental results and

associated errors. (See references [30], [31] and [32] for complete treatments

of this subject.)

105
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C1 Holography

C.I.I Theory

The hologram is constructed by recording the interference pattern that occurs

during the mixing of two beams of light. The time-varying electric field at V

any point of a linearly polarized light wave can be represented by

E(t) = a()e(D~( 4

J0

where a (v) is the amplitude and a (4k) is the phase of a component with

frequency v. If the light wave is of a single frequency then this becomes

E (t) = aei(2 
t - )

which can be written as the product of a time varying factor and a factor

which does not vary with time:

E (t) ='.

where the factor

A = ae- #

is called the complex amplitude. The intensity I is given by

I=A1 2 = AA*,

which represents the time average of energy per unit time per unit area at a :-. ,.

point. Interference at a point of two waves is given by the superposition of

electric fields ,
A, + A2 = ale -io' + a 2

- i42

and the intensity of this interference is given by

I = JAI + A212  -'

= JAI1 2 + JA 212 + AIA; + A.A2
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or equivalently

= I, + 12 + 2 (11 2)1 cos ( 1 - 2)

= ()I[1 + V cos( 1 - 02)],

where (I) is the average intensity and V is the modulation of the intensity

distribution, referred to as the visibility of the fringes and defined by

I na + Im Il + 12 -

If the polarization of the two light waves makes an angle 0, then

(1) [1 + VCOS(01- 02) COS0.

All real wave-fields only have a finite degree of coherence. Both the spatial
coherence and the temperal coherence of the light source must be considered.

The actual bandwidth Av of the laser, with mean frequency v,, affects the

coherence time Ar of the radiation by the relation

Ar

The coherence length Al is defined by

Al cAT -

where c is the speed of light, AA is the range of wavelengths and A, is the

mean wavelength. It is necessary that the difference in path lengths from the

light source to the point where interference occurs is less than the coherence Ii
length Al.

C.1.2 Double Exposure Holographic Interferometry N

In Figure 2.2 of Chapter 2, the optical arrangement for producing holographic

interferograms is shown. The hologram is a photographic plate which records

.., ,',
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the intensity distribution of light emerging on it. The object beam is colli-

mated as it enters the test section and passes through the fluid-flow region.

The reference beam does not pass through the test section. It is assumed

that the changing conditions of the fluid-flow inside the test section are the

only changing conditions of the optical system during both exposures of the

hologram, so only the object beam is different in each case. During each of

the two exposures, both the object and the reference beams simultaneously

expose the holographic plate. This produces two different interference pat-

terns and results in two holograms being recorded on the same plate. The

intensity on the plate during the first exposure is given by
I, (xy) = r (x, y) + o1 (X, Y) 12 ,

where

r(x,y) = r'(, y)e-(z y, )

represents the complex amplitude of the reference beam and where .

01 (X, Y) = o' (X, Y) e-"'(*,)

represents the complex amplitude of the object beam with no flow in the

test section. After the plate is developed, the recorded image of fringes can

be described by a transmittance function defined as the ratio of the light

amplitude transmitted to that which is incident on the plate given by

T T. + TII + T 2 I +...,

where T. is a background transmittance of the unexposed plate and T1, T2,

etc. are properties of the photographic plate. Assuming the photographic

process is linear, and neglecting T., then the transmittance can be written as

Toc I, .

The intensity on the plate during the second exposure is given by

12 (x, y) -r (xy) + 0 (XY)1
2 ,
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where the reference beam has the same complex amplitude r(x,y) as that

during the first exposure and the object beam's complex amplitude

02 (-,= 0X Y

includes the new phase distribution o2 (z, Y) due to the presence of the flow.

The resulting amplitude transmittance of the two superimposed holograms is

given by
T(z,y) oc I, (x, y) + 12 (x,) .

The hologram is reconstructed by ilurninating it with the reference beam and

results in a complex amplitude F given by

F x, y) =,r(x,y) T(xy)I

In these experiments the region of the optical system containing the flow is

imaged directly onto the plate during exposure resulting in an image-plane

hologram and so
F(x,y)=T(z,y) ;_

and the reconstructed intensity distribution is given by

I= IF(xqy),

which when expanded, contains a term that corresponds to the interference

between the two object beams:

I IoC' (,Y)1 2 1 + V' cos [01 (X,)- 02 (X, Em1
where V' is the actual modulation of the intensity distribution (or visibility)

recorded on the plate and describes the distribution of fringes on the interfer-

ogram.

C.1.3 The Holographic Plate

The complex amplitude transmittance of the holographic plate can be repre-

sented as a polynomial and can be written as

T =T + AE + 2E+
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where T. is the transmittance of the unexposed plate, and 01 and 02 are the

coefficients of the polynomial. The exposure E is defined by

E=rI,

where r is the exposure time and I is the intensity. When assuming linear

response of the photographic process then the relation

T =,6,E = #1 TI

can be used where /6 is the slope of the T-E curve that characterizes the

photographic emulsion on the plate. Another parameter that characterizes

the emulsion is the Modulation Transfer Function (MTF) which is defined as

the ratio of the actual modulation of the plate to input modulation and is a

function of the spatial frequency S. This can be written as

M(s) = v'(s)

C.2 Interferometry of Plane Flow Fields

The interpretation of interferogram fringes is greatly simplified in plane flows
such as that in the test section. The fringe distribution is given by

1+ Vcos[41 (-,Y)- 2 (X, )],

1which at any point, the fringe shift S(x,y) can be found from the relation

S (X,Y) =2 [01 (X, Y) - 02 (X, Y)]
2vf

This fringe shift is related to the change in optical path length by the relation

AS(XY)f 2 [n,(x, y, z) -n 2 (XYZ)] ,

S1I
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where nj and n2 are the initial and final distributions of index of refraction of

the medium. In general, the integral cannot be inverted in the three dimen-

sional case. Assuming the path $IS2 is along the z axis and that the properties

of the planer flow are independent of z, then the fringe shift is given by

AS (z,y) = L (n, (z,y)- -n (Z, 0),1'

where L denotes the distance spanned by the light beam in the direction ofI

the ignorable coordinate z. Using the relation

n (z,y)- 1 = kp(x,y)

where k is the specific refractivity relating density p and refractive index n,

the expression A

p1 (Z,Y) - P2(z,Y) = LS(X, )

directly relates the fringe shift distribution to the changes in the density dis-

tribution of the flow.

C.3 Refraction Error

In the previous analysis of interferometry of plane flow fields, the optical path

length integral was simplified by the condition that the path S, S2 of a light

ray is along the ignorable z axis of the flow. When large density gradients in

the x or y direction exist, then the light ray will be refracted from its original z

direction and an error will occur in the location of the fringes. This refraction

error can be analyzed by calculating the actual path of the ray. This can.I

be done by making use of Fermat's principle which states that of the many

possible paths for a light ray moving from one point to another, the path

actually chosen is the one for which the transit time is stationary. The time

(taken) t can be defined by a
rS2 S2

t n () ds
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I

The ray will be allowed to refract in the y-z plane so that

di =V~d2 +dZ2= 1+ (dz

The expression for t can be written as

t= _s n(y) 1 + (L dz.

The condition that this integral be stationary is satisfied by the ray equation

[34] given by
d 1 dn (y)
dz 2  n (y) dy

In a gas medium, in non-resonant regions of the spectrum, the relation
n-lfkp,(n- 1)

can be used to give the result

dZ2 dy

where £* is the local curvature of the ray path and where k is the specific

refractivity defined by k dn

dp

If the density gradient is a constant, then

dp Ap
dy Ay

and the final deflection angle e of a ray which spans the z distance L is given

by
jL " = k _ = .L"p

d 2  A y z AL

The total displacement b of the ray in the y direction can be approximated

by the product of average deflection angle e/2 and the distance L so that

1 kL 2 APC

2 Ay
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Experiment # 6 (miliradians) 6 (mm)

8 5.14 .128
10 5.21 .130
16 2.63 .066
21 2.98 .075

Table CI: Fringe Refraction Error.

describes the error in the location of the fringe in the y direction. This error

can be approximated for the case of the vortex using the parameters Ap and

Ar of the fitted vortex density functions (see Appendix H). The well-depth

parameter Ap and the half-width parameter Ar can be used in the relations

c kL 2 A

and

b 1 U2 Ap

to calculate the deflection angle c and the radial displacement 6. The ratio of

the radial displacement of the fringe location and the total density radius of

the vortex is then given by

2Ar 2 (2Ar)

These errors are calculated for the four cases: Experiments #8, #10, #16

and #21, using the density parameters given in Appendix H. The results of

these calculations are given in Table C.1.
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I

C.4 Interferograms #1--+#21 UI

The interferograms described in Section 2.2.1 are shown in Figures C.1, C.2,

C.3, C.4, C.5, C.6 and C.7. These interferograms are the results of Ex-

periments #1 through #21. Interferograms #1 through #6 record the

shock wave flow before the vortex is generated. Interferograms #7 through

#21 show the vortex at sequential stages of development in approximately 50

micro-sec intervals. For each interferogram a close-up of the vortex is shown

in the figures. The results of the evaluation of Interferograms #8 through

#21 are given in Appendix I, Tables 1.1--+1.14. The plots of these data and

the corresponding fitted curves are given in Appendix H, Figures H.1--H.14.

I
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Figure 0.1: Interferograms #1, #2 and #3.
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Figure 0.2: Interferograms #4, #5 and #6.
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Figure C.4: Interferograms #10, #11 and #12 ;and Close-up of Vortex in Each 
R

Case.
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C.5 2-D Flow Check

In order to check the two-dimensionality of the flow, an interferogram of the

flow is made perpendicular to the vortex axis by rotating the test section about

the axis of the shock tube by 90 degrees. Figure C.8 shows two interferograrns

made at the same DDG setting, and flow conditions, but with the collimated

object beam parallel to the vortex axis in one case and perpendicular to the

vortex axis in the second case. The straightness of the fringes in the second

case represents the degree of two-dimensionality of the flow. The DDG setting

for the laser pulse was 625 micro-sec and these conditions correspond closely

to that of Interferogram #14. Since in the second case the flow expands in a

cyllindrical fashion, the object beam spans different lengths of flow at different

distances from the end of the shock tube up to a maximum of 65 cm, which is

the distance between the windows containing the flow in this direction. The

sensitivity of the interferogram in the second case is about 13 times that of

the first case; and thus, a single fringe shift corresponds approximately to a

change of only 1/260th of atmospheric density.

A

I

-. • I



C.5. 2-D FLOW CHECK 123

P4 = 600 psi, clock =143.6 ps, DDG 625 pts

P4 = 585 psi, clock =143.7 pis, DDG =625 js

Figure 0.8: Interferograrns #22 and #23: 2-D Test of Flow.t WA
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C.6 Flow Repeatability Check

To check the repeatability of the flow conditions and the reliability of the

timing system, the two interferograms in Figure C.9 may be compared. The

shock tube conditions are given in each case. The DDG setting was determined "

by several trials so that the center of the vortex can be seen in the location

of the crossed lines on the grid (which are scribed into the window). The

location of these crossed lines is described further in Appendix E. (These lines

mark the position of the hole which is later drilled into the window for the

mounting of the pressure transducer.) Comparison shows that the vortex in

both experiments is in the same location; and thus, the degree of repeatability

of the experiments is established.

I
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P4 =610 psi, clock =143.2 p&s, DDG =770 As

Figure 0.9: Interferogramns #24 and #25: Repeatability Test of Flow.
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C.7 Determination of Vortex Age and Posi-

tion

In order to determine the age of the vortex in each interferogram, a correction

must be made to the preset delay time on the DDG to account for the slightly

different speeds of the shocks in each case. The timing system is initiated by

the shock and after a fixed time delay the laser is fired. The shock tube is fired
once for each experiment and the shock tube flow conditions are recorded each

time. These conditions are comprised of the diaphram breaking pressure P 4

and the shock speed V (as measured by the clock). The DDG setting for the

timing of the delayed laser pulse (see Section 2.1.3, Chapter 2) is also recorded

for each experiment. Table C.2 summarizes the essential information for each
of Experiments #1 through #21. For each experiment, the first column in-

dicates the experiment # and the second column identifies the holographic

plate. The interferograms corresponding to these experiments are shown in

Figures C.1 through C.7. The third and fourth columns in Table C.2 con-

tain the values of the clock reading from the shock time-of-flight measurement

system as described in Section 2.1.3 (Chapter 2) and the corresponding cal-
culation of the shock velocity respectively. The average clock time recorded

is 143.2 micro-sec and the average shock speed is 684.4 m/sec. The RMS

deviation from the average value is .4 micro-sec and the corresponding shock

speed deviation is 1.9 m/sec. The average shock Mach number is given by
1.995 ± 0.3%. The total delay time of the laser pulse from the time of arrival

of the shock at the shock sensing laser beam (see Section 2.1.3, Chapter 2) is

the sum of the DDG setting and the Q-switch delay, both indicated in Table

C.2. The Timing error At associated with the difference of the shock speed

from the average value is given by

At =(clock - X7Z-) (total dlck time)

'I - W -, U - - - - -U - .-.-!111U U061p!- -
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where the difference of the clock reading from the average value =

143.2 micro-sec is multiplied by the ratio of the total time delay and the

clock reading. The values of At for the experiments are given in the last

column of Table C.2. The RMS value of At for Experiments #1 through _-

#21 is 4 micro-sec. For each experiment a corrected value of the total delay

time is calculated by subtracting the timing error At. These corrected delay

times are given in Table C.3 along with the x position of the shock and

x-y coordinates at the vortex center as determined from Interferograms #1

through #21. Experiment #6 corresponds to the event of the vortex birth

and for the analysis of the vortex, this is the zero reference time used for

calculating the vortex age. The vortex age is then given by

t (vortex age) = (total corrected delay time) - 1460 microseconds.

The information in Table C.3 is used to plot the shock position and vortex

trajectory in Figures C.10 and C.11. Figure C.10 shows the shock posi-

tions, the vortex trajectory relative to the shock tube test section and also

a corresponding x-t plot of both the shock and vortex. Figure C.11 shows

only the region of the test section where the vortex is convected and indicates

the locations of the center of the vortex as determined from Experiments #6 S

through #21. From this detailed trajectory information, the position of the

pressure transducer (also indicated in the figure) was determined. Also in

Figure C.11 is an x-t plot of the shock and vortex in this region along with

the straight-line best-fit to the points. The slopes of the best-fit lines give

approximate velocities of both the shock and the vortex in this region of the .

test section. By this method the average vortex convection velocity is found

to be 173 m/sec and the average shock velocity is found to be 498 m/sec. The

speed of sound in air at room temperature (T=293 degrees K) is 343 m/sec; %

and thus, the calculated average Mach number of the shock is 1.43. (Other

methods, described in Appendices D and E, are used to measure both the

shock Mach number in the test section and the vortex convection velocity.)

NO.
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56uk SOU 0 -baltck Total Two la
Esp Plate 1loc, (8/s) ClockWee t*mo-sa I Ls us) I U.s I~) EfroE

-S) u) 14 5 I 1uS) tlli) to-/- .111 (/ 1*1 (*/ 1)~'I Total fiolClock I .S)

1 493 142.8 6%.3 -0.4 1.9 0.60 1W 1207.6 6.5 *3.
2 499 143.,9 611.0 07 -3.4 s6.: INS5 1216.9 .7 6.1
3 499 142.0 606. 3 -a619 160 16 111. .2 3.7

* 95 143.1 664.0 -0.1 0.s X5.0 15 150.1 95 -0.9

5 494 143.1 60.6 -0.1 64 26.0 1%5 1466. 9.6 I .
469 143.0 0.3 -0.2 0.9 216.0 1065O 126.0 10.2 -2.

7 464 143.0 605.3 402 0.9 =6.6 1065 1. 10.5 -2.1
0 465 144.6 6. 0.0 -3. 3's 6.60 as 1539.0 10.6 1.

9 43 143.1 61 0.7 -J.4 460.60 1065 1606.9 11.2 7.6
"046 1., 66.90.1 -. 5 456.6 1063 1636.3 11.6 1.2

I 42 14.9 605.0 0 1.4 560.6 1065 1707.9 12.0 - 3.6

12 467 143.1 664.6 -:.1 0.6 556.6 1065 1756.1 12.3 - 1.2
13 459 142.8 406. 3 -0.4 1.9 616.6 165 107.6 12.7 -5.1

14 4X0 143.0 65.3 -0.2 0.9 45.: 105 l030.# 13.0 - 2.6
is 460 143. 1 6114.8 -0.1 0.4 70.6 1065 19"6. 13.3 - 1.3

16 4fl 143.4 603.4 0.2 -1.0 756.6 1065 1916.6 13.7 2.?
17 461 143.3 613.9 0.1 -0.5 WAu 1065 2W6.3 14.0 1.4
Is 473 143.2 664.4 0 0.6 6W.60 1065 20=.2 16.4 0.0
19 414 143.2 666.4 0.0 0.6 W6A6 INS 21W6.2 14.7 0.8
20 473 142.6 616.3 -6.4 1.9 956.60 166 2157.1 IS.1 -6.0
21 476 143.1 60 -6.1 6.4 1016.06 166 22N6.1 15.4 - 1.5

Clock

so S: 64.4 all

ru_

#0* rooCoc- .9 al

04"ru I I Will Error) 4u

Table C.2: Experimental Conditions: Experiments #1--+#21.

.1
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I tel Cuter of ?Srt@1
Correi IO yak Positift______ ______

Ius WSe I Ice) I Ica)(C)
Ezp C (t-14,. .021 W.- .023 .1 .021

I 1211.27.26
2 252.69.66

31311.5 12.681 
. ..

4139. 0 15.24 .

11409.1 17 .75
6 1466.6 26.16 26.42 -1.39
7 1516. 1 22.54 2j. 14 -1.21

I 1556.3 24.45 21.12 -1.29
91601.1 26 .91 22.35 -1.34

16 1457.1 29.'64 23.61 -. *36
11 1711.5 32.26 24.75 -1.47
12 ?17. 36.45 25.36 -1.56
13 1012.*9 26.91 -1.71
14 164.6 2?. 3 -1 .61
15 1919.46 26.3s -1.96
16 19".7 29.12 -1.97

17 26.9 31.64 -2.05
16 2656.*2 36.63 -2.12
19 2166.2 31. 61 -2.24
26 2163.0 12.U4 -2.39
21 2269. 6 33.13 -2.43

Table 0.3: Shock and Vortex Position; and Corrected Delay Time for Experiments

#1-'#21.
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VORTEX TRAJECTORY
I. -
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Figure 0.11: Plot of Vortex Positions Along Trajectory for Experiments #6--+#21;
and Line-Fit to x-t data for Shock and Vortex.
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Appendix D

Time-of-Flight Measurements

In Appendix C, values for the velocity of the expanding shock and the con-

vection velocity of the vortex were calculated from information contained in

the sequence of interferograms. These calculations are further supplemented

by direct measurements of these velocities inside the test section using a time-

of-flight method. -

D.1 Apparatus and Method

The same type of apparatus used for shock speed measurements (in the shock

tube) described in Section 2.1.3, is also used to measure the convection velocity

of the vortex and the shock speed in the test section. This is a simple time-

of-flight measurement using two parallel laser beams spaced a known distance.,

apart which pass through the flow region. The actual positions of the laser •

beams relative to the vortex trajectory (Figure D.1) are 6.5 cm apart and Z

pass through the flow where the vertical lines intersect the trajectory line in

the figure. The beams are also perpendicular to the window. Each beam

passes through the flow to a detector on the other side. As the shock or S

vortex arrives at each beam location in sequ.ence, the density gradients of

133
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y(cm) '" i
LOD4.0ao
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0.
678 916 C
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X(cm) "

Figure D.1: Placement of Laser Beams Along Vortex Path for Shock and Vortex
Time-of-Flight Measurements.

each deflect the beams and the light intensity level at the detectors decrease.

The voltage output of the detectors is recorded on a dual trace oscilloscope ,
and sample photographs of the traces are shown in Figure D.2, where the

upper photograph is typical of those for measuring vortex speed and the lower
one is typical of those for measuring shock speed. The upper photograph was '- .'

taken at conditions very close to those which existed during the recording of

Pressure Signal #3 shown in Figure E.4 (Appendix E). The measured vortex . .

speed along the trajectory determined from this particular set of traces (upper "- "

photo Figure D.2) is found to be 180 m/sec ±2%. This speed was used to

determine the transformation factor given by .018 cm/micro-sec, which is used

in the transformation of the vortex time-response (Pressure Signal #3) into a

spatial distribution (see Appendix E for further details).

.
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D.2 Tabulation and Plots of Experimental Re-

sults

The results of several time-of-flight experiments at different running conditions

are given in Tables D.2 and D.3. Table D.2 gives the measured velocity

of the shock wave both before and after it enters the test section where the

expansion causes it to slow down. (The Mach number of the shock in both

cases is also given in this table.) Table D.3 gives the measured convection

velocity of the vortex along with the initial speed of the shock that produced

it. The information in these tables is summarized graphically in Figures D.3,

D.4 and D.5. A graph of the expanded shock speed vs. initial shock speed 0

is given in Figure D.3; a graph of the expanded shock Mach number vs.

initial shock Mach number is given in Figure D.4; and a graph of the vortex

convection velocity vs. the initial shock speed is given in Figure D.5.

These results are supplimented by additional information, in the form of x-t
..coordinates of the shock wave, gained by the following methods: N

* Computer simulations of the test section flow yield x-t information about

the shock, from which shock velocities and Mach numbers can be calcu-

lated.

" The interferograms (see Appendix C) also yield x-t information about
the shock wave in this region of the test section.

Table D.1 gives the x-t coordinates of the shock along the x axis as obtained

from Interferograms #1 through #12 (see Table C.3, Appendix C); the Mach

number of the shock is calculated at each interval corresponding to a posi-

tion x. Also in Table D.1, are supplimentary values of shock Mach number

at different x positions which were obtained from computer simulations (see

Moon [35]). Figure D.6 shows both an x-t plot of the shock and a plot of the ',."or

shock Mach number vs. x position using the information in Table D.1. Also I

contained in Figure D.6, are the supplimentary results from the computer

61,01 '."A
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0

Mach no. of expanding shock from expernental data:

Exp.# x (cm) t(mic-s) M MO.

1 7.26 1211.2 1.624
2 9.60 1252.8 1.625
3 12.81 1311.5 1.533
4 15.24 1359.0 1.476
5 17.75 1409.1 1.418
6 20.16 1460.0 1.372
7 22.54 1510.1 1.385
6 24.45 1550.3 1.392
9 26.91 1601.1 1.426
10 29.64 1657.1 1.396
11 32.20 1711.5 1.364
12 34.45 1759.3 1.374

Mach no. of expanding shock from computer simulatlon:

x (cm) MACI NO.

3.7 1.95
7.4 1.670
11.1 1.565
16.28 1.465
21.09 1.405

Table D.A: Expanding Shock x-t Coordinates and Mach Number From Interfero-
grams and Computer Simulations.

simulations of the expanding shock; these points are indicated by the triangu-
lar symbols. The shock Mach number in the region of the pressure transducer

is shown to be about 1.4 in Figure D.6. These results are further supported
by pressure measurements across the shock, from which the shock Mach num-
ber can be calculated (see Section E.5, Appendix E). This information is used .._-. t..

in determining a density reference for evaluation of the interferograms (see

Section 2.3, Chapter 2).

01 L



D.2. TABULATION AND PLOTS OF EXPERIMENTAL RESULTS 137

P4 =580 psi, clock =143.7 1A.

P4 50 ps, cock 43.51A0

Figue D2: Tme-f-FlghtSignls ecored n osillscop Phtos
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LAMU MEASURUMT OF SHC VKLOCITY SUM6 AND AMR~ M~ANSION1

initial shock ex~anded shock
P4 clock -- - - - - - - -- - - - - - -

(PSI) (uiC-G) v (W/) Mach no. v (NA) Mach no.

610 141.9 690.6 2.012 46353 1.350
610 142.2 689.2 2.006 471.0 1.372
610 142.5 687.7 2.003 466.5 1.3593
610 142.7 616 .6 2.001 463.2 1.349
590 142.8 606.3 1.999 464.5 1.353
590 143.5 682.9 1.969 467.4 1.361
560 143.6 "81.5 1.965 460.3 1.341
570 144.2 679.6 1.960 466.5 1.359
570 144.3 679.1 1.976 465.4 1.356

Table D.2: Expanding Shock Time-of-Flight Data Before and After Expansion.

Vam VIWCTf mI6amewD

initial resultant
shock speed vortex speed

672.15 1010.39
673.54 179.39
674.00 1615
675.66 12.67
677.26 163.62
679.14 163.01
680.56 165.70
"81.03 164.40
685.79 183.18
686.76 169.14

Table D.3: Vortex Time-of-Flight Data.
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1 I

Figure D.3: Expanded Shock Speed Vs. Initial Shock Speed.

IL

1i °

Figure D.4: Expanded Shock MaSh Number Vs. Initial Shock Mach Number.
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VORTEX VELOCITE MIEASUIREM

67 674 '76 678 Goo "a G" G

Figure D.5: Vortex Convection Velocity Vs. Initial Shock Speed.
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x-t PLCT Of EXPANDING SHOCK
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Figure D.6: x-t Plot of Expanded Shock and Plot of Mach Number of Expanded "

Shock Vs. x Position.
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Appendix E

Pressure Measurements

S

E.1 The Pressure Transducer

The pressure transducer used in the experiments described in Section 2.1.4

is a solid state device which incorporates a diffused four-arm Wheatstone 0
bridge on the surface of a silicon diaphram. These devices have a high natu-

ral frequency and low hysteresis which make them suitable for recording the
unsteady pressure response of a traveling vortex. The transducer used is a

type XCQ-080-50 made by Kulite Semiconductor Products, Inc. The rated

pressure for this gauge is 50 psi; with a sensitivity of 1.89 mv/psi which was

determined during calibration at the factory. The diameter of the cylindrical

transducer package is .080 inches and the pressure sensitive area is .028 inches

(.7 mm) across. The transducer was mounted such that the pressure sensitive

diaphram was flush with the inside window surface.

143
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E.2 Supporting Electronics

The supporting electronics for the pressure measurements consisted of a 5 volt

DC power supply to provide the excitation voltage and an amplifier with a 50

khz bandwidth to amplify the signal from the transducer. The amplified signal

is sent directly to an oscilloscope and the gain of the amplifier (approximately

100) is adjusted so that a one volt change on the scope trace represents a 5

psi change in pressure.

E.3 Transducer Positioning

The pressure transducer must be placed along the trajectory of the traveling

vortex. The center of the vortex passes over the transducer and a pressure

response in time is recorded on the oscilloscope. It is important to verify

that the location of the transducer in the window coincides with the position

of the center of the vortex at some delay time t. This was accomplished by

first scratching a new vertical line which crosses a horizontal line of the grid,

as shown in Figure E.1. As shown in the interferograms in Figure E.1 the

intersection of these lines is observed to coincide with the center of the vortex

at t=770 micro-sec. A hole is drilled into the window at this location for

mounting the transducer. The experimental conditions corresponding to the

interferogram in Figure E.1 are given in the figure caption.

E.4 Oscilloscope Photographs

Samples of the pressure response of the vortex are shown in the oscilloscope

photographs in Figures E.2, E.3, and E.4. An additional oscilloscope pho-

tograph shown in Figure E.5 represents the pressure response of only the

shock wave as it passes by the transducer. The three vortex pressure signals

t_ %/ ' =€ r.#. WJ~ ~ k ,'% _-_¢ w .% \f ' %f .'.' %' "
-S ' . S. .. "
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(numbered 1 -- 3 in the captions) are made under the following experimental

conditions:

(a) Signal #1: P4 = 610 psi, cick-143.3 micro-sec p

(b) Signal #2: P 4 = 585 psi, clock=144.2 micro-sec

(c) Signal #3: P 4 = 595 psi, clock=143.7 micro-sec

In each case the upper photograph represents the pressure response of the
whole shock generated flow including the convected vortex. The time scale is

100 micro-sec/division and the sensitivity is 5 psi/division. The initial sharp

pressure rise is due to the passage of the shock. This is followed by a fairly

constant rate of decreasing pressure and then the arrival of the vortex is ob-

served about 300 micro-sec behind the shock. The lower photograph shows

the same signal in an expanded time scale (10 micro-sec/division) and sen-

sitivity (2.5 psi/division) in order to reveal the details of the vortex only.

Pressure Signal #4 shown in Figure E.5 was made under the following

experimental conditions: P4 = 585 psi and clock=144.2 micro-sec. The up-

per photograph represents the pressure response of the shock generated flow

without the vortex generator (airfoil model) in place. The time scale is 100

micro-sec/division and the sensitivity is 5 psi/division. As in the other pho-

tos, an initial sharp pressure rise due to the passage of the shock is observed,

followed by a fairly slow rate of decreasing pressure; but in this case, note Z

the absence of the vortex. The lower photograph shows the same signal in an
expanded time scale (2 micro-sec/division) and sensitivity (2.5 psi/division)

in order to reveal the details of the shock wave only. The shock wave passing

over the transducer very closely approximates a step-function pressure signal

and is used to characterize the step-response of the pressure measurement

system. This information is used in the deconvolution process of the vortex

pressure signal (see Section E.6).

.8
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Figure E.2: Oscilloscope Photographs: Pressure Signal #1.
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Figure E.3: Oscilloscope Photographs: Pressure Signal #2.
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P

(PSI)

.0 0 0 00 so 40 100

Figure E.6: Digitization of Vortex Pressure Signal #3.
E.5 Digitization of Pressure Signal

The pressure traces are digitized by hand using a digitizing tablet. The os-

cilloscope photograph is first enlarged so that the trace on the photograph is '.

approximately the same size as the tablet. This insures that the trace is ac- -p.

curately resolved. The cursor guide is placed on the center of the trace as the

trace is followed by hand. The initial set of coordinates are not equally spaced

but are close enough so that a spline-fit to this data set yields an accurate set

of equally spaced points representing the digitized pressure response of the
vortex. The result of the spline-fit to the original coordinates entered into the

computer from Pressure Signal #3 shown in Figure E.4 is plotted in Figure

E.6. During this digitizing process the voltage and time scales are referenced

to the divisions in the photographs and a conversion is made from voltage to

pressure according to the calibration factor (5 psi/volt) given in Section E.2. "

The pressure is referenced from the part v& the signal before the shock arrives,

L-h-ir 04
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which represents the ambient atmospheric conditions of the laboratory. The

temperature of the air in the tube before arrival at the shock was T2 = 22
degrees C and the pressure was 770 mm Hg or equivalently 14.7 psi. The

signal in Figure E.5 resulting from the shock, shows a pressure increase of

about 15 psi behind the shock. The shock strength is given by

P2
_ = 2.02,

which, according to the shock relations (see Appendix A) for a plane shock

wave, corresponds to a shock Mach number of 1.37. This value of shock Mach

number, calculated from the measured pressure ratio across the shock, is in

close agreement with the results of the direct measurements of shock velocity
described in Appendix D (see Figure D.6). This information is used in the

evaluations of the interferograms (see Section 2.3, Chapter 2), in which the
region of the flow behind the shock serves as a dersity reference. The density
directly behind the shock can be calculated with the knowledge of the shock

Mach number; using the shock relations given in Appendix A.

E.6 Deconvolution of Pressure Signal

As the traveling vortex passes over the pressure transducer, it induces a re-

sponse in the form of a voltage which changes in proportion to the pressure.

Since the pressure changes rapidly with time, the limited time-response of the
system affects the accuracy of the oscilloscope trace to represent the actual
pressure changes that have occurred. The measuring system can be charac-

terized by its step-function response and this information can then be used to

deconvolve the pressure signal.
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E.6.1 Theory

The actual pressure changes associated with the traveling vortex over the

transducer can be represented by a function of time P (t). The signal or

response of the system to these pressure changes can be represented as a

Filtered function of time P2 (t) which in Filter theory is given by:

P(t) = I(t-r)P(r) dr =I(t)*P(t) ,

where I(t) is the impulse-response of the system defined by

(t) = A (t) = A'(t)
di

where A(t) is the step-response of the system and is closely approximated by 0

the signal that occurs with the arrival of the shock wave at the transducer

location (see Figure E.5). The vortex pressure signal P2 (t) is then given by

P2 (t) = A'(t) * P, (t).

The Convolution Theorem gives (see reference [36])

P2(f)=T(f)P1 (f)

where P 2 (f) is the Fourier Transform of P 2 (t) and where T (f) is the Fourier

Transform of A' (t) (often referred to as the transfer function of the system).

So it follows that

P2 (f) /T(f) = P, (f)

Taking the Inverse Fourier Transform of P, (f) gives the original unfiltered sig-

nal P (t) associated with the vortex pressure changes. This process by which

P, (t) is obtained is called deconvolution or inverse filtering. The signals to

be analyzed are sampled at discrete points equally spaced in time. The Dis-

crete Fourier Transforms (DFT) and the Inverse Discrete Fourier Transforms

(IDFT) must be computed for the deconvolution process. These operations

are defined by [36]:
N-I S

DFT P2 (f) = N P2 (t) 
- i27r(f/N)t

t=0
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N-I'"

DFT T(f) = N-' A'(t) e- i2 (f/
N )t

IDFT P (f)= E '(-f-)e

E.6.2 Procedure

For the deconvolution of the pressure signal it is necessary to calculate the

Fourier Transform of both the pressure signal and the impulse-response. Then
an Inverse Fourier Transform of the ratio of these results is calculated to reveal

the inverse-filtered signal P (t). The Fast Fourier Transform algorithm (FFT)

is used for these computations (see reference [36]) which are done on a digital

computer.

The signal to be processed is the digitized vortex pressure response P2 (t),
which is plotted in Figure E.6. In order to use the FFT algorithms, the

signal must be sampled at equal intervals of time. As shown in Figure E.7,
the signal is sampled by 85 points which correspond to intervals that are 1
micro-sec apart. This particular sampling rate (1 MHZ) can resolve frequency

components of the signal up to 500 khz, which is more than sufficient to re-

solve the true vortex signal. Tables E. and E.2 contain the actual values
of pressure in psi units spanning a range of time from 0 to 84 micro-sec in

1 micro-sec steps. This information is plotted in Figure E.7. These tables

also contain the transformed values of these same sampled pressure points
P2 (r), which are used in the raw data calculations in Chapter 4. The trans-

formation factors given in Table E.1 transform these points into a spatial

pressure distribution given in units of N/rn (in .018 cm steps). The zero ref-
erence for the spatial distribution is taken at the minimum value of pressure

and is defined as the center of the vortex. Figure E.8 shows a plot of the

digitized shock pressure response A(t) (pressure signal #4) shown in Figure

E.5. This signal is sampled at the same rate as P2 (t) at 12 points. The
Impulse Pressure Response A'(t) is plotted in Figure E.9 and is computed

=tI
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V
by a first-difference algorithm. The FFT algorithm is then used on the two K.

sampled responses P2 (t) and A' (t) which yield the frequency spectra of these

signals given by P2 (f) and T (f) respectively. The FFT results are given in

Figure E.10, which is a plot of the power spectra of P2 (f), T (f ) and the

ratio 8&f. The Inverse FFT is then performed on this ratio which yields the

final result P, (t), which is plotted in Figure E.11. In Figure E.12 both P, (t)

and P2 (t) are plotted for comparison. The individual points in the plot are

the sampled points of P2 (t) that were originally plotted in Figure E.7 and 0

the solid line in this plot represents a cubic-spline fit to the deconvolved signal

points of P (t). Inspection of Figure E.12 reveals that the major effect of

the deconvolution process is a 10 percent additional drop in pressure at the

vortex center. This corrected pressure signal is then transformed into a spatial --U

distribution by the Galilean transformation factor .018 cm/micro-sec which

is derived from direct measurements of the vortex velocity (see Appendix D).

In Figure E.13 both P2 (r) (the original vortex pressure distribution used for

raw data calculations) and Pi (r) (the deconvolved vortex pressure distribu-

tion) are plotted and compared. The solid line in Figure E.13 represents the

original unprocessed pressure data and the points in the plot represent the

discrete deconvolved pressure information. -

E.6.3 Remarks About Transducer Dimensions

The entire deconvolution process corrected for the limited time-response of the

system, which was characterized by an approximation of the step-response of

the system using the signal from the passing shock wave. The physical size

of the transducer also has an effect on the accuracy of the data since it av-

erages the pressure over the aperture of its width. This effect, combined

with the effect of the time-response of the transducer and supporting elec-

tronics, contributes to the total error of the signal. It is difficult to separate

these effects. The pure aperature spreading effect of the pressure distribu- 0

tion due to the physical dimensions of the transducer could be determined

'.M
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FigreE.7 1MHZ Sampling of Pressure Signal #3.
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by the step-response analysis method only if the system had unlimited time-
response. Also, the pure time-response of the system could be determined

independently by the step-response analysis method only if the transducer

was infinitesimally small. Since the shock wave signal itself contains both
these spatial and time domain effects, then the deconvolution process may
then partially correct for both effects. The operative width of the transducer
is approximately 0.7 mm. If the system had unlimited time-response, then

only the effect of the transducer size would be seen and a signal would occur .
with a rise time of about 1.4 micro-sec as the shock passes by at a speed

of 500 m/sec; thus, the spreading of the signal is due mostly to the limited

time-response of the transducer as opposed to its physical size (see Pressure

Signal #4, Figure E.5).

....
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PRESSURE DA=A SWUM AT 1 JICRO8CM0 MINTRVALS (VORTEX)

t(wicro-s) P(pel) aK N/K-2

0 23.0687" 0.810 159059.1
1 22.89439 TRANUWRIAM ON: 0.792 15785.8
2 22.73813 t-2"r .0160 co1/acro- 0.774 1S6779.4
4 22.35178 P-*P 6895 NW2/PSZ 0.738 154115.5

S 2 .18188 0.720 152944.0
6 22.03187 0.702 1S1909.7
7 21.66905 0.664 15092S.0
I 21.75342 0.66 149989.8
9 21.62602 0.648 149111.4
10 21.51064 0.630 148315.8
11 21.39502 0.612 147518.6
12 21.27928 0.594 146720.6
13 21.09132 0.576 145424.6
14 20.92726 0.56 144293.4
15 20.84655 0.540 143750.7
16 20.77961 0.52,2 143275.4
17 20.72079 0.504 142869.8
18 20.58317 0.486 141920.9
19 20.37637 0.466 140495.0
20 20.07797 0.450 136437.6
21 19.76309 0.432 136266.5
22 19.43670 0.414 134016.0
23 19.26996 0.396 132866.5
24 19.16022 0.378 132109.7
25 19.06720 0.360 131466.3
26 18.95769 0.342 130714.6
27 18.77330 0.324 129441.9
28 18.5871 0.306 126169.1
29 18.30622 0.266 126235.1
30 18.01242 0.270 124195.6
31 17.73364 0.252 122274.8
32 17.43378 0.234 120205.9
33 17.12862 0.216 118101.8
34 16.82436 0.198 11600S.3
35 16.46064 0.160 113497.5
36 15.91607 0.162 109741.3
37 14.83230 0.144 102268.7
38 13.80935 0.126 95215.47
39 12.83051 0.108 66466.31
40 11.68249 0.090 60S50.78
41 10.46747 0.072 72311.10
42 9.5520 0.054 65952.06
43 6.6382 0.036 59674.94
44 8.00552 0.016 55196.06
45 7.82053 0.0 53922.SS
46 7.-A915 -0.018 54947.29

Table E.I: Digitized Raw Pressure Signal and t--+r Transformation.

ZI

4



E.6. DECONVOLUTION OF PRESSURE SIGNAL 159

t(Jcro-s) P(p i) 04 N/N2

47 8.64044 -0.036 59575.83
48 9.52338 -0.054 65663.71
49 10.84715 -0.072 74791.10
SO 12.34971 -0.090 SS151.25
S1 14.18946 -0.108 97536.33
52 15.72848 -0.126 106447.8
53 17.06426 -0.144 117658.0
54 18.10448 -0.162 124830.4
55 18.72176 -0.180 129066.5
56 19.11525 -0.19" 131799.6
57 19.41756 -0.216 13384.2
58 19.62469 -0.234 135312.2
59 19.79001 -0.252 136452.1 .
60 19.95552 -0. 20 137593.3
61 20.12363 -0.286 136752.4
02 20.29173 0.306 139911.4 .. ' .-
63 20.42717 -0.324 140645.3
64 20.54176 -0.342 141635.4
65 20.60919 -0.360 142100.3
66 20.64198 -0.378 142326.4
67 20.67477 -0.396 142552.5
68 20.92297 -0.414 144263.6 9
69 21.17996 -0.432 146035.8
70 21.45937 -0.450 147962.3
71 21.70764 -0.466 149674.1
72 21.92583 -0.496 151178.6
73 22.06986 -0.S04 152171.6
74 22.17297 -0.522 152662.6
75 22.24795 -0.540 153399.6 "
76 22.26383 -0.556 153509.1
77 22.27970 -0.576 153616.5
76 22.23445 -0. 594 153306.5
79 22.15669 -0.612 152770.3
80 22.07943 -0.630 152237.6
81 22.00590 -0.648 151730.6
82 21.93237 -0.66 151223.6
83 21.94523 -0.684 151312.3
64 21.9773 .02 155.1r

Table E.2: (Continuation) Digitized Raw Pressure Signal and t--+r Transformation.

cF
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Figure E.10: Power Spectra From FFT Processing.
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Figure E.11: Deconvolved Pressure Response.
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Figure E.12: Superposition of Deconvolved Pressure Response and Original Signal.
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E.7 Curve Fitting and Model Testing

The 85 points which represent the corrected spatial pressure distribution P1 (r)

(plotted in Figure E.13) are tabulated in Tables E.3 and E.4. These tables

also contain the results of the best-fit model which was found using the curve

fitting routine described in Appendix F. A modified form of the Cauchy dis-

tribution (described in Chapter 3) is used to approximate the pressure data

in the form of a mathematical formula. This results in a compact and conve-

nient form of the data which is then used in further calculations of additional

physical properties of the vortex. Tue points and the fitted curve are plotted

in Figure 3.9, Chapter 3. The RMS value of the residuals, which indicates the

closeness-of-fit, is given in the tables. A homentropic model of the vortex

(described in Chapter 3) was also tested for closeness-of-fit in Tables E.5 and

E.6 in order to investigate a possible homentropic relationship between the

density and the pressure in the vortex. The results contained in these tables

are plotted in Figure 3.10, Chapter 3. The RMS value of the residuals in this

test is given in the tables.

M.I
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LEAST SqJARUS CURVE FIT TO PRESSURE DATA

RM1 (DFF)-6601 N/M ,2

r (cm) P (data) P (model) DFF (DI') ,2

0.8130060 153702.0 149919.0 -3783.060 14311600.
0.7950739 153771.0 149821.0 -3949.860 15601400.
0.7771400 153818.0 149717.0 -4100.980 16818100.
0.7592060 153789.0 149606.0 -4182.640 17494500.
0.7412719 153615.0 149487.0 -4127.910 17039600.
0.7233380 153229.0 149359.0 -3870.450 14980400.
0.7054039 152583.0 149222.0 -3361.700 11301000.
0.6874700 151670.0 149074.0 -2595.750 6737920.
0.6695360 150529.0 148914.0 -1614.450 2606460.
0.6516020 149255.0 148742.0 -512.875 263041.0
0.6336679 147974.0 148556.0 581.531 338179.0
0.6157340 146815.0 148354.0 1538.590 2367270.
0.5978000 145878.0 148134.0 2256.160 S090240.
0.579859 145194.0 147895.0 2700.700 7293800.
0.5619320 144720.0 147633.0 2913.550 8488760. P6
0.5439980 144334.0 .47347.0 3012.830 9077130.
0.5260639 143871.0 147033.0 3161.800 9996960.
0.5081300 143163.0 146"7.0 3524.580 12422700.
0.4901959 142087.0 146306.0 4218.450 17795300.
0.4722620 140611.0 145883.0 5272.140 27795500.
0.4543280 138799.0 145414.0 6615.140 43760100.
0.4363940 136803.0 144891.0 8088.420 65422600.,..
0.4184600 134821.0 144306.0 9485.111 8997296.
0.4005259 13:0,4.0 143648.0 10604.50 112455000.
0.3825919 13159S.0 142907.0 11311.40 127949000.
0.3646579 130499.0 142067.0 1158.30 133825006.
0.3467240 129672.0 141111.0 11439.60 130864000.
0.3287900 128948.0 140019.0 11070.60 122S58000.
0. 310660 128133.0 138763.0 10629.40 112985000. Ail
0.2929220 1270O6.0 137311.0 1025S.60 105177000.
0.274980 125620.0 135625.0 10005.70 100115000.
0.2570539 123806.0 133655.0 9849.090 97004606.
0.2391200 121664.0 131340.0 9676.500 93634704.
0.2211859 119243.0 128604.0 9361.111 87630392.
0.2032520 116542.0 125354.0 8812.701 77663696.
0.1853179 113444.0 121476.0 8031.920 64511800.
0.1673840 109715.0 116835.0 7119.240 50683600.
0.1494500 105037.0 111276.0 6239.700 38933900.
0.1315159 99105.3 104643.0 5538.130 30670900. ,..
0. 1135820 91752.4 96806.4 5053.980 25542800.
0.09564801 83072.7 87732.2 4659. 550 21711400.
0.07771400 73506.S 77602.3 409S.810 1677S700.
0 059780 63849.2 66977.8 3128.570 9787950.
0.0418460 55170.6 56947.6 1777.060 3157940.

I

Table E.3: Least Squares Best-Fit Curve to Deconvolved Data.
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r (cm) P (data) P (model) _DIET (DIE) -2

0.02391200 48650.2 49094.0 443.793 196952.0
0.00597799 45359.4 45078.8 -280.563 78715.3
-0.01195600 46039.1 45906.7 -132.367 17521.1
-0.02989000 50925.7 51361.6 435.883 169994.0
-0.04782400 59671.8 60134.6 462.996 214365.0
-0.06575800 71384.1 70518.8 -865.359 748847.0
-0.06369200 84774.5 81071.4 -3703.110 13713000.
-0.1016260 96392.6 90689.3 -7503.350 56300300.
-0.1195600 11066.0 99557.6 -11328.00 128324000.
-0.1374940 121227.0 106983.0 -14244.40 202902000.
-0.1554260 128868.0 113241.0 -15627.30 244212000,
-0.1733620 133770.0 118476.0 -15293.90 233904000.
-0.1912959 136337.0 122846.0 -13490.00 181981008.
-0.2092300 137254.0 126501.0 -10753.10 115629992.
-0.2271640 137297.0 129568.0 -7728.910 59736100.
-0.2450979 137146.0 132155.0 -4991.340 24913500.
-0.2630319 137258.0 134347.0 -2910.470 8470630. '65
-0.2809660 137819.0 136216.0 -1602.450 2567860.
-0.2989000 138784.0 137819.0 -964.547 930351.0
-0.3168339 139963.0 139201.0 -762.047 580715.0 ,
-0,3347680 141137.0 140399.0 -737.219 543492.0
-0.3527019 142154.0 141444.0 -709.750 503745.0
-0.3706359 142969.0 142359.0 -630.031 396939.0
-0.3885700 143737.0 143164.0 -573.047 328383.0
-0.4065040 144567.0 143876.0 -691.078 477589.0
-0.4244379 145444.0 144SO6.0 -1135.420 1269160.
-0.4423719 147055.0 145072.0 -1983.340 3933650.
-0.4603059 148768.0 145576.0 -3191.310 10184500.
-0.4782400 150623.0 146029.0 -493.660 21101698.
-0.4961740 152386.0 146437.0 -5948.690 35386900.
-0.5141079 153806.0 146806.0 -7001.660 49023200.
-0.5320420 154703.0 147141.0 -7562,300 57188300.
-0.5499760 155007.0 147445.0 -7561.770 57180300.
-0.5679100 154786.0 147723.0 -7063.330 49690600.
-0.5858439 154226.0 147977.0 -6249.480 39056100.
-0.6037760 153565.0 148209.0 -5355.530 26681700.
-0.6217120 153029.0 146423.0 -4606.170 21216800.
-0.6396460 152775.0 148620.0 -414.950 17263600.
-0.6575800 152843.0 146801.0 -4041.970 16337500.
-0.6755139 153169.0 148969.0 -4200.270 17642200.
-0.6934480 153615.0 149124.0 -4490 .440 20164000.

'-

Table E.4: (Continuation) Least Squares Best-V;t Curve to Deconvolved Data.

'.

%A CR!



E. 7. CURVE FITTING AND MODEL TESTING 165

VORTEX RADIAL PRESSURE PROFILE

.flATAOPI DU SIMS) (DIF )-11107 N/ 22EXP .DATA DENSI TYr MODLr

r (cm) P (N/2s-) (k/2'3) P (NI/U'2) (Drz) (DIET) - 2

8.130080 153702.0 1.744160 157355.0 3653.000 13344410
7.950738 153771.0 1.742290 157119.0 3346.00 11209105
7.771399 153818.0 1.740290 15667.0 3049.000 9296402
7.592060 153789.0 1.738160 1S6598.0 2809,000 7890481
7.412720 153615.0 1.735880 156311.0 2696.000 7268416
7.233378 153229.0 1.733440 156003.0 2774.000 7695076
7.054039 152583.0 1.730830 155674.0 3091.000 9554282
6.874700 151670.0 1.728020 155321.0 3651.000 13329802
6.695360 150529.0 1.725010 154941.0 4412.000 19465744
6.516018 149255.0 1.721760 1433.0 5278.000 27657284
6.336678 147974.0 1.718250 154092.0 6118.000 37429924
6.157340 144815.0 1.714460 153617.0 6802.000 46267204
5.978000 145878.0 1.710360 13102.0 7224.000 52186176
5.79665 145194.0 1.705910 132545.0 7351.000 4037200
5.619318 144720.0 1.701070 151939.0 7219.000 52113960
5.439980 144334.0 1.695800 151281.0 6947.000 48260608
5.260640 143871.0 1.690040 150542.0 691.000 44769480
5.081298 143163.0 1.683740 149778.0 6615.000 43758224
4.901958 142067.0 1.676840 148918.0 6831.000 46662560
4.722620 140611.0 1.669250 14795.0 7364.000 5422496
4.543280 13896.0 1.660800 14938.0 8139.000 66243320
43563938 13603.0 1.6516 0 13370.0 591.000 266800
2.9829 127056.0 1.641510 130569.0 3513.000 124117
4.005259 133044.0 1.629990 143127.0 163.00 1016663
3.825920 13159.0 1.617310 141570.0 9975.000 99500624i3.646579 130499.0 1. 03130 13"835.0 9336.000 8716096 '1

3.467240 121672.0 1.587240 13786.0 -226.000 2334794
3.287899 128948.0 1.69350 135731.0 6783.000 12194065
3.0260 128133.0 1.54950 133300.0 5167.000 26697890
2.929220 12746.0 1.526510 130569.0 3513.000 123411702.749880 125620.0 1.500760 1274% .0 1876.000 3519376 :&,.
2.570538 120 .0 1.471540 124035.0 22.000 1 241
2.391200 12166.0 1.438360 120136.0 -1528.000 2334784
2.2118SO 1192143.0 1.400650 115751.0 -3492.000 12194065

2.350 116542.0 1.337860 110830.0 -5712.00)0 326526944
"1.853180 113444.0 1. 309430 105335.0 -8109.000 65755880

1.673840 109715.0 1. 254920 99248.8 - 1046. 20 109541409
1.494500X 105037.0 1.194150 92585.0 -12452.00 155052304

1.315160 99105.3 1.127320 85413.6 -13691.69 187462528
1.135820 91752.4 1.055380 77881.5 -13870.39 192401824
0. 9564001 83072.7 0. 980264 70234.9 - 12837.60 164809232
0.7771400 73506.5 0.905294 62829.9 -10676.60 113969824
0. 5976000 63949.2 0.635116 56116.6 -7730.596 59762140
0.4184600 55170.6 0.775619 50602.1 -4568.500 20671192
0.2391200 46650.2 0.732989 46751.7 -1898 .500 3604302

:%'

Table E.5: Homentropic Test of Deconvolved Pressure Data.

p. .p
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ki

r (cm) P (N m 2) (1a/J3) P (NI/'2) (DF) (DIF')}2

0.0S97799 45359.4 0.712401 44923.6 -435.797 169919
-0.1195600 46039.1 0.716563 45293.3 -745.801 556219
-0.2989000 50925.7 0.744966 47624.8 -3100.698 9615572
-0.4782400 59671.8 0.793877 52277.5 -7394.301 54675684
-0.6575600 71384.1 0.657630 56247.9 -13136.20 172559840
-0.6369200 84774.5 0.930017 65245.1 -19529.39 381397406
-1.016260 96392.6 1.005500 72776.7 -25615.89 656174272
-1.195600 11006.0 1.079630 60419.3 -30466.70 928219966
-1.374940 121227.0 1.150230 87653.2 -33373.79 1113810.3 ,.
-1.554280 126868.0 1.215100 94867.4 -34000.60 1156040e3
-1.733620 133770.0 1.273790 101343.0 -32427.00 1051510336
-1.912960 136337.0 1.326230 107232.0 -29105.00 847101056
-2.092298 137254.0 1 372720 112532.0 -24722.00 611177260 a"

-2.271640 137297.0 1.413760 117270.0 -20027.00 401080736
-2.450978 137146-0 1.449690 121467.0 -15659.00 245204268
-2.630320 137258.0 1.481700 125235.0 -12023.00 144552528
-2.609659 137819.0 1.509710 12561.0 -9258.000 85710566
-2.989000 138784.0 1.534410 131515.0 -7269.000 52638360
-3.16339 139963.0 1.556230 134142.0 -5621.000 33884040
-3.347680 141137.0 1.575570 136481.0 -4656.000 21678336
-3.527019 142154.0 1.592740 138568.0 -356.000 12859397
-3.706360 142989.0 1.606030 140434.0 -2SSS.000 6528025
-3.885700 143737.0 1.621690 142107.0 -1630.000 2656900
-4.065040 144567.0 1.633930 143610.0 -9S7.000 91S49
-4.244379 145644.0 1.644920 144965.0 -679.000 461041 J
-4.423718 147055.0 1.6S4620 146186.0 -867.000 751689
-4.603056 148766.0 1.663760 147295.0 -1473.000 2169729
-4.782400 150623.0 1.671660 148300.0 -2323.000 5396329
-4.961740 152386.0 1.679210 149214.0 -3172.000 10061585
-5.141078 153606.0 1.665910 150047.0 -3761.000 14145122
-5.320418 154703.0 1.692020 150809.0 -3894.000 15163237
-5.499760 155007.0 1.697600 151507.0 -350.000 12250001
-5.679100 154786.0 1.702730 152147.0 -2639.000 6964321
-S.65438 154226.0 1.707430 152736.0 -1490.000 2220100
-6.037778 1S3565.0 1.711760 153276.0 -287.000 82369
-6.217120 153029.0 1.715760 1S3779.0 750.000 562500
-6.396460 15277S.0 1.719450 154243.0 1466.000 2155024
-6.575798 152843.0 1.722870 154672.0 1829.000 3345241
-6.755138 153169.0 1.726040 155071.0 1902.000 3617604
-6.934460 153615.0 1.728980 155441.0 1626.000 3334276

Table E.6: (Continuation) Homentropic Test of Deconvolved Pressure Data.
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ADDENDUM

BRIEF ASSESSMENT OF RECENT LITERATURE
ON BLADE-VORTEX INTERACTIONS

Since the blade-vortex interaction is the principal application for the results of
the present study, one may ask about the current status of BVI research. Currently,
it is a most active field of study, a substantial amount of which has been stimulated
by the interest of ARO. The high degree of complexity is well-known and stems 0
from the basic 3-D non-steady character of the flow field. Superimposed on these
features are compressibility effects associated with the transonic nature of the flow
around advancing rotor tips; and also dissipative behavior associated with the
vortex structure as well as the role of viscous/turbulent boundary layers in the BVI.
Classical vortex theory applied to BVI also has difficulties with the application of the
Kutta condition. Basic modifications are required in order to apply theory.
Somehow, one must incorporate the phenomena just mentioned to yield the
aerodynamic performance, transient and vibratory pressure loading and the

Sgeneration of acoustic radiation. As we know, the theoretical approach has, of
necessity, been supplemented by other studies; and the totality of recent and
current investigations has indeed resulted in an increased level of understanding
of BVI.

In a somewhat oversimplified way, studies of BVI car' be characterized by either ,
one or a combination of the following categories: (1) theoretical, (2) computational,
(3) experimental -- large scale or flight, (4) experimental -- basic laboratory studies.
Recent activity has included all these categories. In this brief overview, reference
will be made to those studies which are especially relevant to the work proposed
here.

A program which complements the Stanford vortex interaction investigation is
that being pursued by Dr. G. Meier and associates in Gattingen. 1 ,2,3 They have
investigated the interaction of a Karman vortex street with a suitable profile in a
transonic tunnel; and also the interaction of single vortices with an airfoil, using a
shock tube. The special emphasis in their work is on the generation of sound.
Measurements were made by pressure devices and Mach-Zehnder interferometry,
including a special method for digital fringe analysis 0
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The G~ttingen group reports several interesting results, but the inference is
evident that further confirmation, analysis and understanding are in order. Some
principal points of interest are:

(1) In all the studies (including the BVI investigations to date here at
Stanford), it is clear that lateral displacement of the vortex path
from the stagnation streamline of the airfoil flow is a prime
parameter. Head-on or nearly head-on "collisions" produce
major changas in vortex configuration, associated with very
strong transient pressure loading on the airfoil. What needs

further assessment is the role of the boundary layer in the BVI. 4 Meier
feels that the latter plays an important role in the wind-tunnel case.
The Stanford work has shown that viscosity plays a relatively
minor role in the structure of the free vortex. Further, the
stagnation region boundary layer in either the wind tunnel or
shock tube case will be very narrow in high Reynolds number
flows; so the effect of the boundary layer may not be a major one,
unless one assumes that the secondary vortex is necessarily an
outgrowth of a separated boundary layer. Again, this feature is
part of the basic question of the role of viscosity/turbulence in the
BVI.

(2) The generation of acoustic waves following head-on BVI is
observed. These waves are generated by successive pressure
decreases and increases at or near the stagnation region during
BVI.

(3) Theoretical models for calculation of the vortex paths tend to
show them following the streamlines - approximately. These
models, based on potential theory, do not show good agreement
with experiment, however. (Recent work at Stanford has shown
that the vortex trajectory is very sensitive to the lateral
displacement parameter mentioned in (1) above, and to the
angle of attack as well.

A central function of the experimental studies such as those at Gattingen and
Stanford is to provide reference results to the numedcal/CFD programs for code
validation purposes. Clearly, CFD will have to continue to be a principal approach
to this complex problem. During the past four years, several techniques for
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performing finite-difference calculations on flows containing concentrated vorticity
have been reported in the literature; see, for example, the paper by Fujii and
Kutler.5 More recently, Srinivasan and McCroskey 6 have used a "vortex-fitting"
method in which the structure of the vortex is specified as a perturbation, while its
path develops as part of the solution. (Presumably, this approach could make use
of some of the experimental results for free-vortex structure reported by Mandella
and Bershader. 7 ) These authors used three different computational approaches
based, respectively, on the thin-layer Navier-Stokes, the Euler and the transonic
small-disturbance (TSD) methods. A significant inference from comparison of the
results of the several approaches is that viscous effects are small except for strong
interactions outside the scope of the assumptions made. Important physical 0
deductions: (i) the changing angle of attack resulting from the downwash to
upwash switch in the interaction, (this phenomenon has also been observed in the
Stanford experiments); (ii) in subsonic flow, lift and pitching moment were more
sensitive to vortex position than was the instantaneous pressure distribution; (iii) for
the transonic case, the presence of the shock produces greater sensitivity to these 0

quantities, accompanied by a curious non-steady interaction between vortex and
shock wave.

i An underlying question in much of the work relates to the limitations of the 2-D
formulation. In this connection, Srinivasan et al8 point out that for subcritical flow,
3-D effects are of minor importance but the opposite is true for supercritical flow.
This study also related to the experiments of Caradonna, Laub and Tung 9 in which
a revolving rotor with two blades in a wind tunnel stream encountered a tip vortex
generated upstream by an NACA 0015 wing at angle of attack. These experiments
were three-dimensional, of course; further, the blade rotation introduces important
time-lag effects which are not simulated by BVI with a stationary airfoil. A proper
analysis also requires a detailed knowledge of the structure of the interacting
vortex. -

Three-dimbnsional approaches have also been used by Strawn and
Caradonna 10 , and by Strawn and Tung. 11 The former study developed a program
using a finite-difference procedure to solve a conservative formulation of the full-
potential equation (FPR code) with application to unsteady rotor flowfields. Results N"
obtained for Cp as a function of chord fraction with rotor azimuthal angle as
parameter were compared with the experimental findings of reference 9; and also
with those obtained by Tung and Chang 12, who implemented a non-conservative
formulation of the potential equation. All three sets of results are generally in close
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agreement, although in the near super-critical case there is some difference as to
whether a small shock exists on the rotor or whether the shock has collapsed.
These and other studies also confirm the importance of unsteadiness in the shock
motion.

In reference 11, the authors build on the analysis of the previous reference to
include the effect of rotor wakes on the aerodynamic loading, especially the blade
vortex interaction. Some comparison was made with experiment, and realistic
results were obtained, including cases of supercritical flows.

On the experimental side, the overwhelming body of previous work has dealt
with incompressible vortex flows or vortices on fixed-wing aircraft, especially at
high angles of attack. A paper of interest is that of Kaykayoglu and Rockwell 1 3

who looked at the mechanism of a wedge-type edge interaction with a periodic
system of vortices in terms of instantaneous pressure fields in a water flow. They I
used hydrogen bubble and dye injection techniques, and recorded the flow
visualization simultaneously with pressure records, so the two sets of information
could be correlated. Major observations are, again, similar in some respects -- but
not all -- to what has been seen in air at higher velocities. Near head-on interaction
produced distortion or splitting of the primary vortex, secondary vCrtex formation
and shedding from the tip and an upwash to downwash direction switch.

Differences which have been observed in the preliminary compressible flow BVI
at studies at Stanford very likely are related to the compressibility factor. Among
the few studies exploring this feature is that of D.W. Moore14 who examines the
vortex ring formed by diffraction of a shock wave at the open end of a shock tube.
He finds that the speed of the vortex is slowed down by compressibility effects.
This type of configuration obeys a local similarity theory, which is different from
vortex behavior in the BVI. In Moore's formulation, the entropy is constant across

the vortex, whereas the free vortices in the Stanford experiments 15 (no similarity
behavior) show a substantial radial variation of entropy. If the pressure distribution
be regarded as the forcing function, then the density distribution, and, in that sense,
the compressibility is indeed a function of the entropy variation. Thus, the
compressibility here is different in nature from that reported by Moore. The basic
lesson to be learned from these considerations is that the the vortex analysis where
compressibility is present must supplement the classical aerodynamic approach
with gasdynamic guidelines.

It is worth noting that modeling of BVI based on experiments with shock-tube
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generated vortices can also make use of CFD methods. Yang, Lombard, and
Bershader1 6 have treated both unsteady 1 -D flows and also 2-D shock diffraction
phenomena by a time-dependent upwind high resolution scheme applied to the ,,-,
Euler equations. Flow structures included Mach shocks, contact surfaces and
vortices. Another example was mentioned in the main proposal, namely the work
of Yee and her colleagues in using a TVD scheme - Euler solver.1 7 It is
anticipated that such work will be extended to the shock-tube BVI studies.

This brief overview of some selected work relating to BVI confirms that much
has been learned about the nature of the phenomenon. Other results must still be
considered empirical until a deeper understanding is obtained. However, there is

now a more substantial framework than existed even at the beginning of this
decade to which can be attached guidelines for the continuing research in the
subject. The Stanford group plans to make full use of this existing body of
knowledge in implementing the research program outlined on page 17(a) of the ,-,

main proposal.

h6. o
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